Researchers Develop Method for Mapping Neuron Clusters
“We have established a method to find functional groupings of neurons based on co-fluctuation of their responses,” says Roozbeh Kiani, an assistant professor in NYU’s Center for Neural Science and one of the study’s authors. “In doing so, we show that PFC neurons are organized into spatially contiguous maps, much like their counterparts in sensory cortices. The widely accepted notion that orderly spatial maps are restricted to sensory cortices, therefore, needs revision.”
“Our methodology is closely related to the techniques that led to the discovery of functional networks in brain imaging studies,” adds William Newsome, a professor of neurobiology at Stanford University and a Howard Hughes Medical Institute Investigator. “There is, however, a crucial difference. We extend the methodology to cellular scale and demonstrate that it can be used for identifying networks at a neuronal level. By suggesting a potential neural substrate for functional networks in macro-scale brain imaging we bridge a critical gap in our knowledge.”
The research focused on the “parcellation” of PFC neurons: how these cells are grouped together to perform specific functions. The scientists showed that the discovered subnetworks in the prefrontal cortex are linked to the decision-making behavior but seem to have distinct roles: one subnetwork better represents upcoming choices and another one seems to keep track of past choices.
Previous studies that explored spatial organization of neurons in the prefrontal cortex predominantly focused on the average responses of neurons by examining them one at a time. They missed the organization of the network “forest” for the neuron “trees”. In the Neuron paper, the researchers outlined a vastly different method. In it, they focused on the correlated activity of large numbers of simultaneously recorded neurons to spot the larger “topography” of the network—and how their groupings may be linked to the behavior. Specifically, they applied clustering algorithms that discover natural divisions in the matrix of response correlations to divide the recorded neural population.
“This technique provides an innovative, but straightforward, way to delineate cortical networks,” observers Kiani. “The subnetworks in the PFC are stable across behavioral tasks and are apparent even in the spontaneous fluctuations of neural responses. They seem to be largely defined by the intrinsic connectivity of neurons in the local network. Therefore, they provide an objective basis for dividing the cortex into constituent subnetworks, offering a common standard across experiments.”
The study’s other authors include Diogo Peixoto and Christopher Cueva from Stanford University’s Department of Neurobiology and Stephen Ryu, M.D., from the Palo Alto Medical Foundation’s Department of Neurosurgery.
The research was funded, in part, by Howard Hughes Medical Institute, Simons Collaboration on the Global Brain, and the Air Force Research Laboratory (FA9550-07-1-0537).
Contact Information
James Devitt
Deputy Director for Media Relations
james.devitt@nyu.edu
Phone: 212-998-6808
Media Contact
More Information:
http://www.nyu.eduAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Innovative vortex beam technology
…unleashes ultra-secure, high-capacity data transmission. Scientists have developed a breakthrough optical technology that could dramatically enhance the capacity and security of data transmission (Fig. 1). By utilizing a new type…
Tiny dancers: Scientists synchronise bacterial motion
Researchers at TU Delft have discovered that E. coli bacteria can synchronise their movements, creating order in seemingly random biological systems. By trapping individual bacteria in micro-engineered circular cavities and…
Primary investigation on ram-rotor detonation engine
Detonation is a supersonic combustion wave, characterized by a shock wave driven by the energy release from closely coupled chemical reactions. It is a typical form of pressure gain combustion,…