Deadly Japan quake and tsunami spurred global warming, ozone loss

An air quality monitoring station on Cape Ochiishi, on the east side of Hokkaido Island in Japan. Ground-based air monitoring stations in the country recorded high levels of halocarbons following the Tohoku earthquake and tsunami in 2011. Credit: National Institute for Environmental Studies

New research suggests that the thousands of buildings destroyed and damaged during the 9.0 magnitude earthquake and tsunami that struck Japan four years ago released 6,600 metric tons (7,275 U.S. tons) of gases stored in insulation, appliances and other equipment into the atmosphere.

Emissions of these chemicals, called halocarbons, increased by 21 percent to 91 percent over typical levels, according to the new study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

First look

The study is the first to look at how the Tohoku earthquake affected the release of halocarbons into the atmosphere and likely one of the first to examine emissions of these gases following a natural disaster, according to the study’s authors.

“What we found is a new mechanism of halocarbon emissions coming from the earthquake,” said Takuya Saito, a senior researcher at the National Institute for Environmental Studies in Tsukuba, Japan, and lead author of the new paper.

Halocarbons released as a result of the earthquake include chemicals that deplete the ozone layer and contribute to global warming – including some gases that are no longer used because of those harmful effects on the environment. These include chlorofluorocarbons like CFC-11, a powerful ozone-depleting chemical used in foam insulation until it was phased out in 1996, and hydrochlorofluorocarbons like HCFC-22, an ozone-depleting refrigerant that is also a powerful greenhouse gas and is in the process of being phased out of use. Among other halocarbons released by the earthquake were hydrofluorocarbons, or HFCs, and sulfur hexafluoride, both potent greenhouse gases.

The emissions of the six halocarbons released from Japan in 2011 are equivalent to the discharge of 1,300 metric tons (1,433 U.S. tons) of CFC-11 alone — equal to the amount of CFC-11s found in 2.9 million refrigerators manufactured before the chemical was banned. The total emissions of the six chemicals are also equivalent to the release of 19.2 million metric tons (21.2 million U.S. tons) of carbon dioxide into the atmosphere – an amount equal to about 10 percent of Japanese vehicle emissions in 2011, according to the study’s authors.

Post-quake surprise

Saito and his colleagues decided to investigate halocarbon emissions and their relationship to the earthquake after ground-based air monitoring stations in Japan recorded surprising high levels of these chemicals. The stations are on Hateruma Island, east of Taiwan; Cape Ochiishi, on the east side of Hokkaido; and Ryori, north of Tokyo on Honshu.

The study’s authors combined these measurements with an atmospheric model and other mathematical methods to figure out that increased emissions from the earthquake were involved, how much of the emissions could be attributed to the disaster and how they compared to previous years.

They found that emissions of all six halocarbons were higher from March 2011 to February 2012, following the earthquake, than they were during the same time the year before the event and during the same period the year after it.

About 50 percent of the halocarbon emissions after the earthquake were of HCFC-22, likely due to damage to refrigerators and air conditioners. Emissions of the gas were 38 percent higher than the years before and after the earthquake. Emissions of CFC-11 were 72 percent higher than emissions before and after the earthquake, likely due to damage to insulation foams used in appliances and buildings, according to the study. Emissions of two types of HFCs — HFC-134a and HFC-32 — rose by 49 percent and 63 percent compared to the years before and after the disaster.

Impacts assessed

The new study also calculates the total impact of the increased emissions on ozone depletion and global warming. The earthquake-triggered surge of halocarbons increased ozone loss from Japanese emissions of those six gases by 38 percent* from March 2011 to February 2012 compared to the same time period in the years before and after the event. The amount of heat trapped in the atmosphere because of Japan’s emissions of those six gases rose 36 percent from March 2011 to February 2012 compared to earlier and later years because of the extra emissions from the earthquake, according to the new study.

Saito said the new study shows the importance of including the release of gases from natural disasters in emissions estimates. Although the global effect of one event is small — emissions associated with the Tohoku earthquake accounted for 4 percent or less of global emissions in 2011 — the cumulative effect could be larger, he said. Natural disasters accelerate the release of halocarbons and replacement of these gases could lead to the use of more halocarbons, according to the study.

National halocarbon emissions estimates by the Japanese government did not factor in the release of the chemicals due to the earthquake and are likely underestimating the amount of these substances in the atmosphere, according to Saito. Governments rely on inventories of chemicals and generic data about how they are used to estimate their amounts in the atmosphere – called a “bottom-up” approach” — whereas the new study uses actual measurements of the gases – called a “top-down” approach. “It is apparent that there are unreported emissions,” Saito said.

The new study shows that there could be a need to include the amount of halocarbons released by catastrophic events in emissions estimates, said Steve Montzka, a research chemist at the National Oceanic and Atmospheric Administration in Boulder, Colorado, who was not involved in the research. It also highlights the need for more measurements of halocarbons in the atmosphere, he added, rather than relying on bottom-up emissions estimates from inventories.

“Atmospheric scientists often say that relying solely on bottom-up inventories to tell you how greenhouse gas emissions change is like going on a diet without weighing yourself,” Montzka said.

*Note: This value has been corrected from the accepted manuscript posted online.

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation onFacebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL062814/abstract?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.
Title
“Extraordinary halocarbon emissions initiated by the 2011 Tohoku earthquake”

Authors:
Takuya Saito: National Institute for Environmental Studies, Tsukuba, Japan;

Xuekun Fang: Norwegian Institute for Air Research, Kjeller, Norway; and State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China;

Andreas Stohl: Norwegian Institute for Air Research, Kjeller, Norway;

Yoko Yokouchi and Jiye Zeng: National Institute for Environmental Studies, Tsukuba, Japan;

Yukio Fukuyama: Japan Meteorological Agency, Tokyo, Japan;

Hitoshi Mukai: National Institute for Environmental Studies, Tsukuba, Japan.

Contact Information for the Authors:
Takuya Saito: saito.takuya@nies.go.jp

Xuekun Fang: fangxuekun@gmail.com, +1 (617) 955-9144.

Andreas Stohl: ast@nilu.no, +49-89-374-18029

AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

Media Contact

Nanci Bompey American Geophysical Union

More Information:

http://www.agu.org

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…