Getting blade bearings in shape for the turbines of the future
In wind turbines in the 7-10 MW range, the wind drives blades of up to 80 m in length. Blade bearings, the interface between the hub and the blades, are the design bottleneck in the development of systems of this size. Due to the sheer dimensions of the blades, the systems are subject to effects which can be already detected in turbines with smaller dimensions but are not all that significant.
As the load increases, faults in the blade bearings also increase exponentially and the rate of damage rises. At the same time, almost no information is available on how and why these faults develop. As a result, experience-based design of blade bearings, standard practice among manufacturers, is now reaching its limits.
One possibility for reducing the loads to which the structure of the wind turbines is subject is individual pitch control (IPC), which balances out the loads across the individual blades and reduces them overall. However, as there is still no reliable information available concerning the suitability of blade bearings for the use of IPC and because the latter further increases the demands placed on the blade bearings, the industry sector remains somewhat hesitant to introduce this seminal technology.
The researchers involved in the HAPT project want to resolve these uncertainties by developing a test bench for blade bearings and a method for calculating their service life. Accelerated testing procedures should make it possible to simulate 20 years of operation in a testing period of just six months.
“According to our strategy we contribute method expertise of testing wind turbine components,” comments deputy director Prof. Dr. Jan Wenske the IWES’ share. The aim is to provide the industry with the necessary prerequisites for the computational design of blade bearings – dimensioning will become more precise, the use of IPC will be made reliably possible and levelized cost of electricity will be cut at the same time.
IMO Head of Engineering Hubertus Frank is confident: “The new testing opportunities of HAPT will establish a new basis for the development of future blade bearings. We will provide blade bearings and a wealth of practical know-how for the tests.” Prof. Dr.-Ing. Gerhard Poll of the Leibniz Universität Hannover sees beneficial effects:
“I expect this project to bring together the competencies of Fraunhofer IWES, Leibniz Universität Hannover – and thereby ForWind – in an exemplary way. Along with IMO Group the wind turbine technology will make a big step forward.” The results of the project will be incorporated in the future standardisation of blade bearings.
Kontakt:
Fraunhofer Institute for Wind Energy and Energy System Technology IWES
Babette Dunker
Head of Internal and External Communication
Am Seedeich 45
27572 Bremerhaven
Tel. +49 (0)471-14290-228 babette.dunker@iwes.fraunhofer.de
Project Partners:
The Fraunhofer Society is the leading organisation for applied research in Europe. The group is composed of 67 institutes and research facilities working at locations all over Germany. 24,000 employees achieve an annual research volume of more than € 2.1 billion, of which more than € 1.8 million are in the field of contract research. The Fraunhofer Society generates more than 70 per cent of this segment through industry assignments and publicly financed research projects. International cooperations with leading research partners and innovative companies all around the world ensure direct access to the key current and future scientific communities and markets.
In 1831, founded by the scholar Karl Karmarsch, the “Higher Trade School of Hannover” started with only 64 students. Today there are more than 25,000 students in the natural sciences and engineering, the humanities and social sciences as well as in law and economics. In the future, too, studying, teaching and research are to be enjoyable, and therefore one of the declared goals of Leibniz Universität Hannover is to continually improve the quality of teaching and research. Leibniz Universität Hannover has a large scientific potential. This is proved by numerous research activities. Leibniz Universität Hannover concentrates on nationally and internationally competitive key areas in order to sharpen its profile in this way. The research is strengthened by cooperation with internationally leading universities and research centres.
The IMO Group was founded 1988 and has more than 25 years experience in designing, manufacturing and supplying slewing rings and self-contained slew drives. Currently more than 500 employees work for IMO worldwide. IMO ball and roller slewing rings are being designed, manufactured and sold in diameters 100 mm up to more than 6000 mm in a wide variety. Applications include for instance industrial and plant building, cranes, construction machinery, mining and medical technology. In renewable energies IMO is a leading supplier of blade, yaw and main bearings for on- and offshore wind turbines, and provides blade bearings for tidal stream systems. IMO Slew drives are used in manlift platforms, tunneling, steering equipment such as gantry cranes and heavy-duty transporters, cranes or many more.
Media Contact
All latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…