Cryo-electron microscopy achieves unprecedented resolution using new computational methods

Complete capsid of bacteriophage P22 generated with validated atomic models that were derived from a high-resolution cryo-electron microscopy density map. Credit: C. Hryc and the Chiu Lab, Baylor College of Medicine

Cryo-electron microscopy (cryo-EM)–which enables the visualization of viruses, proteins, and other biological structures at the molecular level–is a critical tool used to advance biochemical knowledge. Now Lawrence Berkeley National Laboratory (Berkeley Lab) researchers have extended cryo-EM's impact further by developing a new computational algorithm that was instrumental in constructing a 3-D atomic-scale model of bacteriophage P22 for the first time.

Over 20,000 two-dimensional cryo-EM images of bacteriophage P22 (also known as the P22 virus that infects the common bacterium Salmonella) from Baylor College of Medicine were used to make the model. The results were published by researchers from Baylor College of Medicine, Massachusetts Institute of Technology, Purdue University and Berkeley Lab in the Proceedings of the National Academies of Sciences earlier in March.

“This is a great example of how to exploit electron microscopy technology and combine it with new computational methods to determine a bacteriophage's structure,” said Paul Adams, Berkeley Lab's Molecular Biophysics & Integrated Bioimaging division director and a co-author of the paper. “We developed the algorithms — the computational code — to optimize the atomic model so that it best fit the experimental data.”

Pavel Afonine, a Berkeley Lab computational research scientist and paper co-author, took the lead in developing the algorithm using Phenix, a software suite used traditionally in X-ray crystallography for determining macromolecular structures.

The successful rendering of bacteriophage P22's 3-D atomic-scale model allows researchers to peek inside the virus' protein coats at resolution. It is the culmination of several years of work that previously had enabled Baylor College researchers to trace out most of the protein's backbone, but not the fine details, according to Corey Hryc, co-first author and a graduate student of Baylor biochemistry professor Wah Chiu.

“Thanks to this exquisite structural detail, we have determined the protein chemistry of the P22 virus,” Chiu said. “I think it is important that we provide detailed annotations with the structure so other researchers can use it for their future experiments,” he added. Chiu's lab has been using cryo-EM and computer reconstruction techniques to build 3-D molecular structures for almost 30 years.

And the findings could have valuable biological implications as well.

Thanks to the 3-D atomic-scale model, it's now “possible to see the interactions between the pieces making up the P22 virus, which are critical to making it stable,” Adams said. This helps researchers figure out how to make chemicals that can bind to certain proteins. Adams underscores that the ability to understand the configuration of atoms in molecular space can be used to generate new insights into drug design and development.

###

The National Institutes of Health funded this work.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Jon Weiner
jrweiner@lbl.gov
510-486-4014

 @BerkeleyLab

http://www.lbl.gov 

Media Contact

Jon Weiner EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative vortex beam technology

…unleashes ultra-secure, high-capacity data transmission. Scientists have developed a breakthrough optical technology that could dramatically enhance the capacity and security of data transmission (Fig. 1). By utilizing a new type…

Tiny dancers: Scientists synchronise bacterial motion

Researchers at TU Delft have discovered that E. coli bacteria can synchronise their movements, creating order in seemingly random biological systems. By trapping individual bacteria in micro-engineered circular cavities and…

Primary investigation on ram-rotor detonation engine

Detonation is a supersonic combustion wave, characterized by a shock wave driven by the energy release from closely coupled chemical reactions. It is a typical form of pressure gain combustion,…