DNA-binding strands used to create molecular zipper
Virginia Tech students and faculty members are creating releasable coatings and thin films using the same chemistry that nature uses to bind the double helix of DNA.
They will present their research at the 227th national meeting of the American Chemical Society in Anaheim, Calif., March 28-April 1, 2004.
“We are coating a patterned surface with accepting molecules then applying donating molecules – that is, using molecular recognition — to create a molecular zipper,” explains Tim Long of Blacksburg, professor of chemistry in the College of Science at Virginia Tech.
Applications would be strong, multilayered structures that might be used for body armor, as well as for releasable coatings and films.
The researchers are using heterocycles – the same groups that bind strands of DNA. “They can be selected to recognize specific complementary groups based on the attributes desired,” Long says.
The paper, “Multiple hydrogen bonding on surfaces (PMSE 135),” will be presented by Casey L. Elkins, a graduate student from Coopersville, Mich. Her co-authors are doctoral student Kalpana Viswanathan of Madras, India, Adhesive and Sealant Science Professor Thomas C. Ward of Blacksburg, Va., and Long. The presentation will be at 2:40 p.m. on Monday, March 29, at Coast Anaheim Hotel in the Park B room as part of the Division of Polymeric Materials: Science and Engineering symposium on Functional Polymer Thin Films for Switching, Sensing, and Adaptive Applications.
Elkins received her undergraduate degree from Michigan State University and Viswanathan received her master of science degree from Indian Institute of Technology, Madras.
Contact for more information
Dr. Timothy Long, telong@vt.edu or 540-231-2480
Casey Elkins, chudelso@vt.edu
Kalpana Viswanathan, kviswana@vt.edu
Media Contact
More Information:
http://www.technews.vt.edu/All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…