Comet mission reveals 'missing link' in our understanding of planet formation
A research team led by Jürgen Blum (Technische Universität Braunschweig, Germany) have analysed data from the historic Rosetta mission to uncover how comet 67P/Churyumov-Gerasimenko, or “Chury” for short, came into existence more than four and a half billion years ago.
Understanding the evolution of our solar system and its planets was one of the main objectives of the Rosetta mission to comet 67P/Churyumov-Gerasimenko. For Jürgen Blum and his international team it was worth it, because results from the various Rosetta and Philae instruments have revealed that only one out of many proposed models can explain their observations. Comet 67P consists of 'dust pebbles' ranging between millimetres and centimetres in size.
Professor Blum explains the implications of the team's observations “Our results show that only a single model for the formation of larger solid bodies in the young solar system may be considered for Chury. According to this formation model, 'dust pebbles' are concentrated so strongly by an instability in the solar nebula that their joint gravitational force ultimately leads to a collapse.”
This process forms the missing link between the well-established formation of 'dust pebbles' ('planetary building blocks' formed in the solar nebula by sticking collisions between dust and ice particles) and the gravitational accretion of planetesimals into planets, which scientists have pondered over for years.
“Although it sounds very dramatic” Blum continues, “it's actually a gentle process in which the dust agglomerates are not destroyed, but are combined into a larger body with an even greater gravitational attraction – the accumulation of the dust agglomerates into a coherent body is virtually the birth of the comet.” Due to the relatively small mass of comet 67P, the pebbles survived intact until today, allowing scientists to confirm the hypothesis for the first time.
In fact, the pebble-collapse formation model can explain many observed properties of comet 67P, for instance its high porosity and how much gas is escaping from inside. “Now all phases in the planet-formation model have been established”, concludes Blum.
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Innovative vortex beam technology
…unleashes ultra-secure, high-capacity data transmission. Scientists have developed a breakthrough optical technology that could dramatically enhance the capacity and security of data transmission (Fig. 1). By utilizing a new type…
Tiny dancers: Scientists synchronise bacterial motion
Researchers at TU Delft have discovered that E. coli bacteria can synchronise their movements, creating order in seemingly random biological systems. By trapping individual bacteria in micro-engineered circular cavities and…
Primary investigation on ram-rotor detonation engine
Detonation is a supersonic combustion wave, characterized by a shock wave driven by the energy release from closely coupled chemical reactions. It is a typical form of pressure gain combustion,…