Newly Discovered microRNA Regulates Mobility of Tumor Cells
During an embryo’s development, epithelial cells can break away from the cell cluster, modify their cell type-specific properties, and migrate into other regions to form the desired structures there.
This process, which is known as an epithelial–mesenchymal transition (EMT), is reversible and can also proceed in the direction from mesenchymal cells to epithelial cells (MET). It is repeated multiple times during embryonic development and ultimately paves the way for the formation of organs in the human body.
Tumor cells can reactivate the program
Although this is a completely normal process during embryogenesis, it also plays an important role in the spread of tumor cells within the body and in the formation of metastases. As a result, this cellular program has also attracted greater attention in the field of tumor research in recent years.
Tumor cells are able to reactivate the EMT/MET program. By doing so, they obtain characteristics of stem cells and develop increased resistance to not only classical but also state-of-the-art targeted cancer therapies.
An EMT also makes it easier for cancer cells to break away from the primary tumor, to penetrate into surrounding tissue and into blood vessels, to spread throughout the body and to form metastases in distant organs, which is ultimately responsible for the death of most cancer patients.
The research group, led by Professor Gerhard Christofori from the University of Basel’s Department of Biomedicine, researches the molecular processes that regulate the cellular EMT program. By doing so, they aim to demonstrate new intervention strategies to combat the development of malignant tumors and the formation of metastases – such as in the case of breast cancer, one of the most common and malicious diseases in women.
Newly discovered microRNA inhibits EMT
In a study published in the latest edition of Nature Communications, the researchers focused specifically on microRNAs (miRNAs), a class of very short non-coding RNAs with a considerable effect on gene regulation. They identified a hitherto unknown microRNA, miR-1199-5p, that induces epithelial cell behavior and impedes the malignancy of tumor cells, as well as their potential to form secondary tumors.
In concrete terms, the newly discovered microRNA prevents the synthesis of a specific protein, the transcription factor Zeb1, which activates EMT/MET – but if it is missing, the EMT process is prevented. Zeb1 also suppresses the expression of miR1199-5p in what is known as a negative feedback loop, whereby the two molecules regulate one another reciprocally.
More and more often, molecular switches of this kind are being found within processes that cause cells to alter or lose their cell type-specific properties. They appear to be responsible for a rapid, reversible cellular response to extracellular stimuli.
In the future, these insights into the molecular networks for regulating EMT/MET plasticity may allow the development of new strategies for the treatment of breast cancer.
Original source
Maren Diepenbruck, Stefanie Tiede, Meera Saxena, Robert Ivanek, Ravi Kiran Reddy Kalathur, Fabiana Lüönd, Nathalie Meyer-Schaller und Gerhard Christofori
miR-1199-5p and Zeb1 function in a double-negative feedback loop potentially coordinating EMT and tumour metastasis
Nature Communications (2017), doi: 10.1038/s41467-017-01197-w
Further information
Prof. Dr. Gerhard Christofori, University of Basel, Department of Biomedicine, Tel. +41 61 207 35 62, email: gerhard.christofori@unibas.ch
https://www.unibas.ch/en/News-Events/News/Uni-Research/Newly-Discovered-microRNA…
Media Contact
More Information:
http://www.unibas.chAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
A ‘language’ for ML models to predict nanopore properties
A large number of 2D materials like graphene can have nanopores – small holes formed by missing atoms through which foreign substances can pass. The properties of these nanopores dictate many…
Clinically validated, wearable ultrasound patch
… for continuous blood pressure monitoring. A team of researchers at the University of California San Diego has developed a new and improved wearable ultrasound patch for continuous and noninvasive…
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….