How Helicobacter pylori causes gastric cancer

The international team of scientists headed by Dr. Nicole Tegtmeyer of the Chair of Microbiology at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) investigated how bacteria destroy the stomach’s protective layer. This protective layer is composed of densely packed epithelial cells that protect the stomach against the effects of gastric acid.

The researchers have now discovered that H. pylori secretes an enzyme, a protease called HtrA, which it uses much like a weapon to penetrate this protective layer. HtrA cleaves the three proteins occludin, claudin-8 and E-cadherin, rupturing the layer of epithelial cells.

As a result, the H. pylori bacteria can access deeper, normally pathogen-free tissue layers, and inflict further damage. This is the first step towards gastric cancer starting to develop.

This first phase, however, is followed by one that is even more dangerous, as the team discovered. Needle-like protrusions, termed type IV secretion systems, are activated and function as ‘molecular syringes’. Using a receptor-dependent mechanism, these inject a bacterial toxin, the CagA protein, through the basolateral membrane of the host cells.

The injected CagA subsequently reprograms host cells, making them potentially cancerous. Another effect of this protein is that it prevents the human immune system from recognising and eliminating the bacteria – a crucial mechanism for the long-term survival of H. pylori in the human stomach.

A new approach to treating gastric cancer

Dr. Tegtmeyer expects these findings will make it possible to develop important new antibacterial therapeutic approaches, as HtrA and CagA are ideal novel drug targets. The team has already started to test specific HtrA inhibitors. “We hope that suitable active agents can either completely prevent infection or inhibit the injection of CagA,” explains Tegtmeyer.

The team has published its results in the leading journal Cell Host & Microbe (doi: 10.1016/j.chom.2017.09.005).The publication is the result of a multi-year research project undertaken in collaboration with Prof. Dr. Silja Wessler of the University of Salzburg and Prof. Dr. Steffen Backert, holder of the Chair of Microbiology at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). The project is being funded by the German Research Foundation (DFG) as part of the Collaborative Research Centre ‘Checkpoints for Resolution of Inflammation’ (CRC1181/TPA04 and Z02) and DFG TE 776 3-1; other working groups in Germany, Italy, Portugal and Switzerland are also involved in the project.

Further information:
Dr. Nicole Tegtmeyer
Phone: +49 9131/85-28988
nicole.tegtmeyer@fau.de

Media Contact

Dr. Susanne Langer idw - Informationsdienst Wissenschaft

More Information:

http://www.fau.de/

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative vortex beam technology

…unleashes ultra-secure, high-capacity data transmission. Scientists have developed a breakthrough optical technology that could dramatically enhance the capacity and security of data transmission (Fig. 1). By utilizing a new type…

Tiny dancers: Scientists synchronise bacterial motion

Researchers at TU Delft have discovered that E. coli bacteria can synchronise their movements, creating order in seemingly random biological systems. By trapping individual bacteria in micro-engineered circular cavities and…

Primary investigation on ram-rotor detonation engine

Detonation is a supersonic combustion wave, characterized by a shock wave driven by the energy release from closely coupled chemical reactions. It is a typical form of pressure gain combustion,…