Rat kidneys and toad brains communicate in almost the same manner

Dutch researcher Niels Cornelisse used computer models to study the electrochemical communication between cells from rat kidneys and cells from the pituitary gland of a toad species. He found many similarities in the coupling of chemical and electrical signals in these completely different cells.

Cells transmit electrical and chemical signals to other cells to coordinate the various cellular activities in the organism. Cornelisse made a mathematical model for the link between the chemical calcium signal and the electrical activity of brain cells. With this model he discovered many similarities between the linking of the electrical and chemical signals in a completely different cell type, the tissue cell, even though the cells studied had completely different functions.

Fundamental knowledge about the manner in which cells communicate with each other, could provide insights into diseases, such as cancer or brain disorders, where something goes wrong with the signal transfer between cells.

The brain cell originated from the pituitary gland of the African clawed frog (Xenopus laevis). This cell issues a hormone which regulates the colouration of the skin. This allows the toad to adjust its skin colour to the light intensity of its surroundings. The other cell type, the tissue cell, originated from the supportive tissue of rat kidneys.

Under certain experimental conditions, both cell types exhibit spontaneous electrical activity as well as associated spontaneous variations in the concentration of calcium ions in the cell. Calcium ions ensure the transfer of information within a cell and are, for example, involved in the emission of chemical signals, cell division and muscular contraction.

As well as the many similarities, the researcher also found an important difference in communication between the two cell types. In the toad cell, the link between the chemical calcium signal and the electrical signal was particularly important for initiating the spontaneous cell activity. However, in the rat cell, the link between the two signals mainly ensured the transmission of the calcium signal through a network of cells.

The research was funded by the Netherlands Organisation for Scientific Research.

Media Contact

Sonja Jacobs NWO

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…