Exploring the deep sea – first-time LIBS measurement at 600 bar
Locating mineral resources on the sea floor has so far been rather expensive. In order to reduce the costs, the LZH is working with eight other European partners to develop a laser-based, autonomous measuring system for underwater use by 2020. The system is supposed to detect samples, such as manganese nodules, and analyze their material composition directly on the deep sea ground.
Pressure chamber allows simulation of the deep sea
For this purpose, the scientists at the LZH are developing a system for laser-induced breakdown spectroscopy (LIBS) within the scope of the ROBUST project. In order to test the LIBS system developed by LZH under deep-sea conditions, a special pressure chamber was designed and manufactured.
With the pressure chamber, a water depth of 6,500 meters can be simulated with a pressure of up to 650 bar. The chamber is suitable for both freshwater and saltwater and can thus simulate various application scenarios. Through a viewing window, the laser radiation enters the pressure chamber with the test sample to be analyzed.
LIBS is a non-contact and virtually non-destructive method of analyzing chemical elements. Solid materials, liquids and gases can be examined. The method is based on the generation and analysis of laser-induced plasma.
Here, a high-energy laser beam is focused on the sample. The energy of the laser beam in the focal point is so high that plasma is created. The plasma in turn emits an element-specific radiation, which is measured with a spectroscope. The emission lines in the spectrum can be assigned to the chemical elements of the sample.
About ROBUST
The project “Robotic Subsea Exploration Technologies – ROBUST” (grant number: 690416) is funded by the European Union within the framework of the program “Horizon 2020”.
Media Contact
More Information:
http://www.lzh.de/All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
A ‘language’ for ML models to predict nanopore properties
A large number of 2D materials like graphene can have nanopores – small holes formed by missing atoms through which foreign substances can pass. The properties of these nanopores dictate many…
Clinically validated, wearable ultrasound patch
… for continuous blood pressure monitoring. A team of researchers at the University of California San Diego has developed a new and improved wearable ultrasound patch for continuous and noninvasive…
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….