Researchers to develop intelligent wheelchair

Computer scientists at the University of Essex have been awarded a grant to develop an intelligent robotic wheelchair.

Researchers from the Department of Computer Science will work alongside scientists from the Institute of Automation at Beijing in developing the advanced technology needed for a high performance, low cost RoboChair which will enable the elderly and disabled to gain increased mobility and live more independently.

The RoboChair will have a user-friendly man-machine interface and the ability of navigation, avoiding collision and planning a path. It will be equipped with a new vision system and a 3G wireless communication system so that its carer or relative can monitor and communicate remotely when necessary.

Professor Huosheng Hu will lead Essex’s Human-Centred Robotics team in developing algorithms for sensor fusion, map-building, intelligent decision-making, and tele-operation through the Internet using 3G mobile phones. Professor Kui Yuan of the Institute of Automation will develop prototype hardware and control software, including servo drivers, DSP-based control systems, sensor systems, and motion control algorithms.

Professor Hu explained why a RoboChair will be beneficial in today’s society: ’Although traditional wheelchairs are widely used by the elderly and disabled they have rather limited functions and flexibility. Support from relatives and carers is often required, but this can be inappropriate as the involvement of relatives is getting more difficult and the cost of running care and health services is very high.

’Today’s technology development in general and pervasive computing technology has reached a stage where we can envisage a solution which allows the elderly and disabled to have necessary mobility to both stay at home and go out independently with the monitoring and services provided from the remote sites.

’We will focus on the development of two levers of complexity. One is a DSP-based control system that is used to achieve good control stability, fast image processing capability and autonomous navigation performance. Another is based on pervasive computing technology that is used to implement an interactive user interface such as voice control, emotion and gesture detection, and wireless communication with relatives and carers remotely.’

The technology developed through this joint project will not only enable users to gain increased mobility and independence, but also enable carers and relatives to monitor and communicate remotely when necessary. Professor Hu continued: ’This is a very challenging project. One of the key challenges is to make the RoboChair cost-effective, easy to use and able to meet the needs of the elderly and disabled and their carers. The ethical and legal issues such as data security, privacy, and complex liability will also be an interesting challenge.’

The research project is being jointly funded by the Royal Society and the Chinese Academy of Sciences.

Media Contact

Kate Cleveland alfa

More Information:

http://www.essex.ac.uk/news

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…