Magnetic forces may turn some nanotubes into metals
Research documents first instance of band-gap shrinkage in a semiconductor
A new study, published in todays issue of the journal Science, finds that the basic electrical properties of semiconducting carbon nanotubes change when they are placed inside a magnetic field. The phenomenon is unique among known materials, and it could cause semiconducting nanotubes to transform into metals in even stronger magnetic fields.
Scientists found that the “band gap” of semiconducting nanotubes shrank steadily in the presence of a strong magnetic force, said lead researcher Junichiro Kono, an assistant professor of electrical and computer engineering at Rice University. The research, which involved a multidisciplinary team of electrical engineers, chemists and physicists, helps confirm quantum mechanical theories offered more than four decades ago, and it sheds new light on the unique electrical properties of carbon nanotubes, tiny cylinders of carbon that measure just one-billionth of a meter in diameter.
“We know carbon nanotubes are exceptionally strong, very light and imbued with wonderful electrical properties that make them candidates for things like smart spacecraft components, smart power grids, biological sensors, improved body armor and countless other applications,” said paper co-author Richard Smalley, director of Rices Carbon Nanotechnology Laboratory. “These findings remind us that there are still unique and wonderful properties that we have yet to uncover about nanotubes.”
By their very nature, semiconductors can either conduct electricity, in the same way metals do, or they can be non-conducting, like plastics and other insulators. This simple transformation allows the transistors inside a computer to be either “on” or “off,” two states that correspond to the binary bits — the 1s and 0s — of electronic computation.
Semiconducting materials like silicon and gallium arsenide are the mainstays of the computer industry, in part because they have a narrow “band gap,” a low energy threshold that corresponds to how much electricity it takes to flip a transistor from “off” to “on.”
“Among nanotubes with band gaps comparable to silicon and gallium arsenide, we found that the band gap shrank as we applied high magnetic fields,” said physicist Sasa Zaric, whose doctoral dissertation was based upon the work. “In even stronger fields, we think the gap would disappear altogether.”
Nanotubes, hollow cylinders of pure carbon that are just one atom thick, come in dozens of different varieties, each with a subtle difference in diameter or physical structure. Of these varieties roughly one third are metals and the rest are semiconductors.
In the experiments, which were performed at the National High Magnetic Field Laboratory (NHMFL) at Florida State University, Konos group placed solutions of nanotubes inside a chamber containing very strong magnetic fields. Lasers were shined at the samples, and conclusions were drawn based upon an analysis of the light that was emitted and absorbed by the samples.
“The behavior we observed is unique among known materials, but it is consistent with theoretical predictions, and we believe we understand whats causing it,” said Kono. “Our data show, for the first time, that the so-called Aharonov-Bohm phase can directly affect the band structure of a solid. The Aharonov-Bohm effect has been observed in other physical systems, but this is the first case where the effect interferes with another fundamental solid-state theorem, that is, the Bloch theorem. This arises from the fact that nanotubes are crystals with well-defined lattice periodicity. I wouldnt be surprised to see a corresponding effect in other tubular crystals like boron nitride nanotubes.”
Kono said the discovery could lead to novel new experiments on one-dimensional magneto-excitons, quantum pairings that are interesting to researchers studying quantum computing, nonlinear optics and quantum optics. Kono said its too early to predict what types of applied science might flow from the discovery.
The NHMFL experiments were conducted in fields up to 45 Tesla in strength — the strongest continuous magnetic field in any lab in the world. Kono said he is arranging for additional tests in stronger magnetic fields. He has already met with research groups in France, Tokyo and at New Mexicos Los Alamos National Laboratory, each of which has facilities that use brief pulses of power to create short-lived magnetic fields that are exceptionally strong.
The research was supported by the Welch Foundation, the Texas Advanced Technology Program, the National Science Foundation, the NHMFL and the State of Florida. Other co-authors included NHMFLs Xing Wei, and Rices Robert Hauge, Gordana Ostojic, Jonah Shaver, Valerie Moore and Michael Strano. Rices team represented the Carbon Nanotechnology Laboratory, the Center for Nanoscale Science and Technology, the Center for Biological and Environmental Nanotechnology and the Rice Quantum Institute.
Media Contact
More Information:
http://chico.rice.edu/All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…