Calculating correlated materials from first principles
Modern functional materials such as superconductors or magnets are underlain by interacting electrons. A detailed description of electronic correlations is important to understand these materials and to devise new applications.
Although exact solutions are restricted to a handful of simple models, the recent development of computational methods holds promise for a forthcoming breakthrough.
Dr. Oleg Janson from IFW Dresden wants to employ such state-of-the-art numerical methods and calculate correlations effects in real materials.
For this he received a grant for a Leibniz Junior Research Group in the 2019 Leibniz Competition. In cooperation with his colleagues at the Vienna University of Technology (TU Wien), Oleg Janson intends to combine conventional electronic structure methods based on the density functional theory (DFT) with the advanced many-body methods such as the dynamical mean field theory (DMFT) and its diagrammatic extensions.
In particular, the program package FPLO (Full-Potential, Local-Orbital) developed at the IFW Dresden will be combined with modern impurity solvers to facilitate numerically efficient DFT+DMFT calculations for real materials.
In this way, the physical properties of correlated materials can be studied and even predicted. Although this project resides in theoretical physics, its importance goes beyond basic research. The results can be used e.g. as a guidance for material development of novel electronic components.
Dr. Oleg Janson
o.janson@ifw-dresden.de
Media Contact
More Information:
http://www.ifw-dresden.deAll latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…