Students fashion space suits for Mars
As if getting to Mars wasnt hard enough, astronauts also have to worry about what to wear when they arrive. Their concerns are not fashion pundits but exposure to micrometeor sandstorms, radiation, and a hyper-cold climate.
However, three undergraduate students at the University of Alberta – Jennifer Marcy, Ann Shalanski, and Matthew Yarmuch – addressed the problem in Dr. Barry Patchetts Materials Design 443 class and have published their findings in the Journal of Materials Engineering and Performance. Students in the class are asked to take something that already exists and improve its performance and design by using new materials.
Patchett said that the space suit for Mars is the first design created in the class that he felt could stand up to the peer review process required for publication. “It is the best project Ive seen in over a decade,” he said.
“I dont know why we decided to design a space suit,” Yarmuch said. “Nothing like it had ever been designed in the class before, so I guess that was the main attraction.”
The three materials engineering students began by studying, layer by layer, the space suits NASA developed for trips to the moon. Suits made for Mars, however, will require much more thought than the ones produced for the moon, Yarmuch said. “Mars has nothing for atmosphere. Theres some carbon dioxide, but thats about it for gases.”
Unlike Earth, Mars does not have a magnetosphere to protect it from radiation and meteors and micrometeors, and astronauts on Mars will also have to deal with average temperatures of –60C. In creating their design, the students tried to balance these concerns with the need to create a suit that the astronauts could move about in as they explored.
“The gravitational force on Mars is about one-third of that on Earth, so if you built the suit with lead to protect the astronauts from the radiation, it would still end up weighing a few hundred kilograms, and the poor guys wouldnt be able to move,” Yarmuch said.
The suit includes ball bearings and bearing and compression rings, and one of the 12 layers of material the students incorporated into their design is Demron, a new polymeric created by a company called Radiation Shield Technologies (RST). As the students completed their theoretical design using computer-aided design software, they did not worry about costs, which “would have been very high” if they produced an actual suit, Yarmuch said.
“We asked RST for an estimate on the cost of Demron, but because its such a new product and we were only asking them for a speculative price, they didnt even want to give us a number,” Yarmuch said. “Ultimately, we designed [the suit] without concern for cost–we went cutting edge on everything.”
Two of the reviewers on the editorial board for the Journal of Materials Engineering and Performance are from NASA, Patchett noted, so perhaps one day parts of the U of A students space suit design will be incorporated into a suit built by NASA.
“That would be very cool,” Yarmuch added. “The development of a real suit to be used on a real mission to Mars is probably still a couple of decades away at least, but I think our research will help point future researchers in the right direction.”
Dr. Barry Patchett can be reached at 780-492-2604 or barry.patchett@ualberta.ca
Media Contact
More Information:
http://www.ualberta.ca/All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…