Practical test passed: Shark skin varnish increases the electricity yield of wind turbines

Automated coating of riblets varnish on rotor blades. © Fraunhofer IFAM

It seems that sharks glide through the water at high speed without much effort. Microscopically small grooves on their skin help them to achieve this remarkable speed. This is due to the friction-minimizing property of the microstructure, which optimizes the hydrodynamic properties of the fish body.

The effect is based on a reduction of turbulent vortices within the boundary layer and leads to a reduction of the frictional resistance. In fluid mechanics, shark skin longitudinal groove structures have been used in a variety of ways for several years.

Functional coating reduces flow resistance in the water and in the air

In order to transfer the principle of shark skin to technical applications, in the beginning mainly grooved adhesive foils were used for experimental purposes. For applications on curved surfaces or requiring high durability under harsh environmental conditions, the use of the film is difficult.

For this reason, the Fraunhofer IFAM has developed a coating solution in which a liquid coating is applied, finely grooved and cured in a single work step. In the past, the aerodynamic benefits of these paint surfaces have been proven for various large-scale applications, especially in aviation and shipping.

But how does the system behave in wind turbine generators and how can it be applied to increase the electricity yield in new turbines as well as retrofitted to existing plants?

Automated coating of riblet paint on rotor blades

Prior to the project, wind tunnel tests on the influence of the Riblet paint system on the aerodynamic properties of a model rotor blade profile had been carried out and led to promising results in terms of performance increase.

On the basis of these results, it was predicted that the Fraunhofer IFAM paint system would significantly improve the aerodynamic quality of the rotor blades – without additional loads for the design of the wind turbine, since the performance-enhancing function is integrated into the paint system.

As a first step of the “Riblet4Wind”project, another comprehensive wind tunnel test series on a 2D airfoil with riblets was carried out by bionic surface technologies. A significant aerodynamic efficiency increase of 10% was measured.

Within the subsequent demonstration phase of the project, each partner had a special task in adapting the Riblet system to the large structures of the rotor blades: bionic surface technologies GmbH determined the optimum geometry for the selected wind turbine using flow simulation and wind tunnel tests, engineers from Mankiewicz developed the paint system, Fraunhofer IFAM provided the paint applicator, which was combined with robotics from Eltronic adapted for rotor blade coating to form an automated application system.

An existing wind turbine, a AN Bonus with a rated output of 450 kW and a rotor diameter of 37 meters, was used to demonstrate the technology. Together with a sister turbine of the same type it is located in Bremerhaven and is operated by Muehlhan Deutschland GmbH. E.ON Climate & Renewables was leading the power measurements.

In order to assess the changes in the performance characteristics, the wind turbines were operated in their original condition for a period of twelve weeks and the corresponding performance data were determined.

Subsequently, the rotor blades of one turbine were dismantled and coated with the Riblet coating. This was the first time that the automated application of Riblet paint to a large component was demonstrated. Once the treated rotor blades had been assembled, the performance characteristics of the turbines were measured over a period of five months using a standardized procedure. Parameters such as wear and contamination were also determined.

Despite the rather old age of the turbines (approx. 20 years old), with corresponding signs of wear and stall control of the rotor blades, the coating was able to show an observable improvement in the power performance. Due to a combination of unusual weather conditions during the test period and issues with data scatter, it has not yet been possible to quantify with confidence a value for the change. The wear of the Riblet structures was negligible in the period under consideration.

Focus on industrial maturity

The project “Riblet4Wind” has proven that a Riblet structured coating can be applied automatically to wind energy rotor blades and leads to an observable improvement of the performance characteristics. It is very likely that this technology will be brought to industrial maturity in the next few years and will be applied across the board. A logical next step would be to demonstrate the technology on a turbine that meets today's standards (> 2MW output with pitch-controlled rotor blades) in order to further quantify its economic potential.

Project funding

The project “Riblet4Wind” – Riblet-Surfaces for Improvement of Efficiency of Wind Turbines -, HORIZON2020 Framework program Grant Agreement H2020-LCE3-2014, No. 657652, started on 1 June 2015 and ended on 28 February 2019. Project partners bionic surface technologies GmbH (Austria), CPT Centre de projecció térmica – University of Barcelona (Spain), Eltronic (Denmark), E.ON Climate & Renewables (United Kingdom of Great Britain and Northern Ireland), Fraunhofer Institute for Manufacturing Technology and Applied Materials Research IFAM (Germany), Mankiewicz (Germany) and Muehlhan A/S (Denmark) would like to thank the European Commission for the project funding.

Project partners

www.bionicsurface.com
www.cptub.com
www.eltronic.dk
www.eon.com
www.ifam.fraunhofer.de
www.mankiewicz.com
www.muehlhan-deutschland.de

Dr. Dorothea Stübing
Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen
phone +49 421 2246-442
dorothea.stuebing@ifam.fraunhofer.de

www.ifam.fraunhofer.de 

http://www.riblet4wind.eu
http://www.youtube.com/watch?v=G3qaxPdwGFI

Media Contact

Dipl.-Biol. Martina Ohle Fraunhofer-Gesellschaft

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…