Scientists discover 'electron equivalents' in colloidal systems
Atoms have a positively charged center surrounded by a cloud of negatively charged particles. This type of arrangement, it turns out, can also occur at a more macroscopic level, giving new insights into the nature of how materials form and interact.
In a new study from the U.S. Department of Energy's (DOE) Argonne National Laboratory, scientists have examined the internal structure of a material called a colloidal crystal, which consists of a highly ordered array of larger and smaller particles interspersed in regular arrangements. A greater knowledge of how colloidal crystals are structured and behave could help scientists determine the applications to which they are best suited, like photonics.
“The smaller particles essentially act like a glue that holds the larger particle arrangement together,” — Byeongdu Lee, Argonne X-ray physicist.
In pioneering research outlined in a recent issue of Science, scientists tethered smaller particles to larger ones using DNA, allowing them to determine how the smaller particles filled in the regions surrounding the larger ones. When using particles as small as 1.4 nanometers — extremely small for colloidal particles — scientists observed an exciting effect: The small particles roamed around regularly ordered larger particles instead of remaining locked in an ordered fashion.
Because of this behavior, the colloidal crystals could be designed to lead to a variety of new technologies in the field of optics, catalysis, and drug delivery. The small particles have the potential to act as messengers, carrying other molecules, electric current or information from one end of a crystal to another.
“The smaller particles essentially act like a glue that holds the larger particle arrangement together,” said Argonne X-ray physicist and study author Byeongdu Lee. “With only a few beads of glue, the best position to place them is on the corners between the larger particles. If you add more glue beads, they would overflow to the edges.”
The small particles that sit on the corners tend to stay still — a configuration Lee called localization. The additional particles that are on the edges have more freedom of movement, becoming delocalized. By being tethered to larger particles and with the ability to be both localized and delocalized, the small particles act as “electron equivalents” in the crystal structure. The delocalization of small particles, which the authors called metallicity, had not been observed so far in colloidal particle assemblies.
Additionally, since the small particles delocalize in part, the effect creates a material that challenges most traditional definitions of a crystal, according to Lee.
“Normally, when you change the composition of a crystal, the structure changes as well,” he said. “Here, you can have a material that is able to maintain its overall structure with different proportions of its components.”
To image the structure of the colloidal crystals, Lee and his colleagues used the high-brightness X-ray beams provided by Argonne's Advanced Photon Source (APS), a DOE Office of Science User Facility. The APS offered a key advantage in that it allowed the scientists to observe the structure of the crystal directly in solution. “This system is only stable in solution, once it dries, the structure deforms,” Lee said.
###
A paper based on the study, “Particle analogs of electrons in colloidal crystals,” appeared in the June 21 issue of Science. Other authors on the study included Martin Girard, Shunzhi Wang, Jingshan Du, Anindita Das, Ziyin Huang, Vinayak Dravid, Chad Mirkin and Monica Olvera de la Cruz, all of Northwestern University.
The Argonne research was funded by DOE's Office of Science (Office of Basic Energy Sciences).
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.
The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https:/
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Innovative vortex beam technology
…unleashes ultra-secure, high-capacity data transmission. Scientists have developed a breakthrough optical technology that could dramatically enhance the capacity and security of data transmission (Fig. 1). By utilizing a new type…
Tiny dancers: Scientists synchronise bacterial motion
Researchers at TU Delft have discovered that E. coli bacteria can synchronise their movements, creating order in seemingly random biological systems. By trapping individual bacteria in micro-engineered circular cavities and…
Primary investigation on ram-rotor detonation engine
Detonation is a supersonic combustion wave, characterized by a shock wave driven by the energy release from closely coupled chemical reactions. It is a typical form of pressure gain combustion,…