Stabilizing sulfur cathode by single Li-ion channel polymer binder
Polymer binder, as an essential component of electrode, acts to bond the active material and are related to the performance of batteries. Unfortunately, the conventional binder has failed to meet the requirements of emerging batteries.
For example, the PVDF binder exhibits low ionic conductivity of Li-ions, poor mechanical stability, and almost none inhibition on the shuttle of polysulfide, these factors limit the applications of Li-S batteries. Therefore, an ideal polymer binder which overcomes the drawback of conventional binders is urgently needed for Li-S batteries.
In a new research published in the Beijing-based National Science Review, scientists at the Soochow Institute for Energy and Materials Innovations for Lithium-sulfur battery in Suzhou, China present the latest advances in Single Lithium-ion Channel Polymer Binder for Li-S battery.
Co-authors Chaoqun Niu, Jie Liu, Xiaowei Shen, Jinqiu Zhou, Tao Qian and Chenglin Yan report a novel polymer binder with single lithium-ions channels allowing fast lithium-ions transport while blocking the shuttle of polysulfide anions. This study reports a new avenue to assemble a polymer binder with single lithium-ion channel for solving the serious problem of energy attenuation of Li-S batteries.
These scientists confirme the effect of the prepared polymer binder on Li-S batteries by monitoring polysulfide concentration in the electrolyte and device capacity retention in real time during the cycle. “The polymer binder is confirmed to effectively immobilize the shuttle effect of polysulfide intermediates by the in-situ UV-vis measurement.”
“Moreover, the excellent adhesion and mechanical stability of prepared binder maintain the structure integrity of sulfide cathode after discharge-charge cycles. These results demonstrate that the promising improvement of Li-S battery by the prepared binder and we believe the reported polymer binder with single Li-ion channels is one of the most effective strategies for the high-energy Li-S batteries.”
###
This work was supported by National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province and Natural Science Foundation of Jiangsu Higher Education Instituions of China.
See the article:
Chaoqun Niu, Jie Liu, Xiaowei Shen, Jinqiu Zhou, Tao Qian and Chenglin Yan
Single Lithium-ion Channel Polymer Binder for Stabilizing Sulfur Cathodes
Natl Sci Rev 2019; https:/
The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.
Media Contact
All latest news from the category: Studies and Analyses
innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…