Sensory perception is not superficial brain work

It seems that sound can strongly draw our attention away from what we're looking at. MPI CBS

If we cross a road with our smartphone in view, a car horn or engine noise will startle us. In everyday life we can easily combine information from different senses and shift our attention from one sensory input to another – for example, from seeing to hearing.

But how does the brain decide which of the two senses it will focus attention on when the two interact? And, are these mechanisms reflected in the structure of the brain?

To answer these questions, scientists at the Max Planck Institute for Human Cognitive and Brain Sciences (MPI CBS) in Leipzig and the Computational Neuroscience and Cognitive Robotics Centre at the University of Birmingham measured how sensory stimuli are processed in the brain.

In contrast to previous studies, they did not restrict their observations to the surface the cerebral cortex. For the first time, they also measured the sensory signals at different depths in the cortex.

The researchers' findings suggest that our brains conduct the multi-sensory flow of information via distinct circuits right down to the smallest windings of this highly folded brain structure.

While the participants in their study were lying in a magnetic resonance tomograph (MRI), the scientists showed them visual symbols on a screen while simultaneously playing sounds. In a prior condition, the participants had been asked to explicitly focus their attention on either the audible or visible aspect of the stimuli.

The neurophysicists Robert Turner, Robert Trampel and Rémi Gau then analyzed at which exact points the sensory stimuli were being processed. Two challenges needed to be overcome.

“The cerebral cortex is only two to three millimeters thick. So we needed a very high spatial resolution (of less than one millimeter) during data acquisition,” explains Robert Trampel, who co-directed the study at the MPI CBS.

“Also, due to the dense folding of the cerebral cortex, we had to digitally smooth it and break it down into different layers, in order to be able to precisely locate the signals. This was all done on a computer of course.”

The results showed that when participants heard a sound, visual areas of their brains were largely switched off. This happened regardless of whether they focused on the audible or visible aspect of the stimuli.

However, if they strongly attended to the auditory input, brain activity decreased, particularly in the regions representing the center of the visual field. Thus, it seems that sound can strongly draw our attention away from what we're looking at.

In auditory brain regions the researchers also observed, for the first time, that the activity pattern, across different cortical layers, changed when participants were presented with only sounds. The situation was different when participants only perceived “something to the eye”:

in that case there was no change. Rémi Gau sums up, “So when we have to process different sensory impressions at the same time, different neuron circuits become active, depending on what we focus our attention on. We have now been able to make these interactions visible through novel computerized experiments.”

Dr Robert Trampel
Department of Neurophysics
+49 341 9940-2293
trampel@cbs.mpg.de

Remi Gau, Pierre-Louis Bazin, Robert Trampel, Robert Turner, Uta Noppeney:
“Resolving multisensory and attentional influences across cortical depth in sensory cortices” in eLife (2020)

https://elifesciences.org/articles/46856

Animation of the cortex: https://www.mpg.de/14444582/0207-nepf-132884-sensory-perception-is-not-superfici…

Media Contact

Bettina Hennebach Max-Planck-Institut für Kognitions- und Neurowissenschaften

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative vortex beam technology

…unleashes ultra-secure, high-capacity data transmission. Scientists have developed a breakthrough optical technology that could dramatically enhance the capacity and security of data transmission (Fig. 1). By utilizing a new type…

Tiny dancers: Scientists synchronise bacterial motion

Researchers at TU Delft have discovered that E. coli bacteria can synchronise their movements, creating order in seemingly random biological systems. By trapping individual bacteria in micro-engineered circular cavities and…

Primary investigation on ram-rotor detonation engine

Detonation is a supersonic combustion wave, characterized by a shock wave driven by the energy release from closely coupled chemical reactions. It is a typical form of pressure gain combustion,…