Rice team makes tiny, magnetically powered neural stimulator

A sample of Rice University's 'magnetoelectric' film atop a bed of uncooked rice. Rice neuroengineers created the bi-layered film to power implantable neural stimulators that are approximately the size of a grain of rice. The film converts energy from a magnetic field directly into an electrical voltage, eliminating the need for a battery or wired power connection. Credit: Jeff Fitlow/Rice University

Rice University neuroengineers have created a tiny surgical implant that can electrically stimulate the brain and nervous system without using a battery or wired power supply.

The neural stimulator draws its power from magnetic energy and is about the size of a grain of rice. It is the first magnetically powered neural stimulator that produces the same kind of high-frequency signals as clinically approved, battery-powered implants that are used to treat epilepsy, Parkinson's disease, chronic pain and other conditions.

The research is available online today in the journal Neuron.

The implant's key ingredient is a thin film of “magnetoelectric” material that converts magnetic energy directly into an electrical voltage. The method avoids the drawbacks of radio waves, ultrasound, light and even magnetic coils, all of which have been proposed for powering tiny wireless implants and have been shown to suffer from interference with living tissue or produce harmful amounts of heat.

To demonstrate the viability of the magnetoelectric technology, the researchers showed the implants worked in rodents that were fully awake and free to roam about their enclosures.

“Doing that proof-of-principle demonstration is really important, because it's a huge technological leap to go from a benchtop demonstration to something that might be actually useful for treating people,” said Jacob Robinson, corresponding author of the study and a member of the Rice Neuroengineering Initiative. “Our results suggest that using magnetoelectric materials for wireless power delivery is more than a novel idea. These materials are excellent candidates for clinical-grade, wireless bioelectronics.”

Tiny implants capable of modulating activity of the brain and nervous system could have wide-ranging implications. While battery-powered implants are frequently used to treat epilepsy and reduce tremors in patients with Parkinson's disease, research has shown that neural stimulation could be useful for treating depression, obsessive-compulsive disorders and more than a third of those who suffer from chronic, intractable pain that often leads to anxiety, depression and opioid addiction.

Robinson said the miniaturization by study lead author and graduate student Amanda Singer is important because the key to making neural stimulation therapy more widely available is creating battery-free, wireless devices that are small enough to be implanted without major surgery. Devices about the size of a grain of rice could be implanted almost anywhere in the body with a minimally invasive procedure similar to the one used to place stents in blocked arteries, he said.

Study co-author and neuroengineering initiative member Caleb Kemere said, “When you have to develop something that can be implanted subcutaneously on the skull of small animals, your design constraints change significantly. Getting this to work on a rodent in a constraint-free environment really forced Amanda to push down the size and volume to the minimum possible scale.”

For the rodent tests, devices were placed beneath the skin of rodents that were free to roam throughout their enclosures. The rodents preferred to be in portions of the enclosures where a magnetic field activated the stimulator and provided a small voltage to the reward center of their brains.

Singer, an applied physics student in Robinson's lab, solved the wireless power problem by joining layers of two very different materials in a single film. The first layer, a magnetostrictive foil of iron, boron, silicon and carbon, vibrates at a molecular level when it's placed in a magnetic field. The second, a piezoelectric crystal, converts mechanical stress directly into an electric voltage.

“The magnetic field generates stress in the magnetostrictive material,” Singer said. “It doesn't make the material get visibly bigger and smaller, but it generates acoustic waves and some of those are at a resonant frequency that creates a particular mode we use called an acoustic resonant mode.”

Acoustic resonance in magnetostrictive materials is what causes large electrical transformers to audibly hum. In Singer's implants, the acoustic reverberations activate the piezoelectric half of the film.

Robinson said the magnetoelectric films harvest plenty of power but operate at a frequency that's too high to affect brain cells.

“A major piece of engineering that Amanda solved was creating the circuitry to modulate that activity at a lower frequency that the cells would respond to,” Robinson said. “It's similar to the way AM radio works. You have these very high-frequency waves, but they're modulated at a low frequency that you can hear.”

Singer said creating a modulated biphasic signal that could stimulate neurons without harming them was a challenge, as was miniaturization.

“When we first submitted this paper, we didn't have the miniature implanted version,” she said. “Up to that point, the biggest thing was figuring out how to actually get that biphasic signal that we stimulate with, what circuit elements we needed to do that.

“When we got the reviews back after that first submission, the comments were like, 'OK, you say you can make it small. So, make it small,'” Singer said. “So, we spent another a year or so making it small and showing that it really works. That was probably the biggest hurdle. Making small devices that worked was difficult, at first.”

All told, the study took more than five years, largely because Singer had to make virtually everything from scratch, Robinson said.

“There is no infrastructure for this power-transfer technology,” he said. “If you're using radio frequency (RF), you can buy RF antennas and RF signal generators. If you're using ultrasound, it's not like somebody says, 'Oh, by the way, first you have to build the ultrasound machine.'

“Amanda had to build the entire system, from the device that generates the magnetic field to the layered films that convert the magnetic field into voltage and the circuit elements that modulate that and turn it into something that's clinically useful. She had to fabricate all of it, package it, put it in an animal, create the test environments and fixtures for the in vivo experiments and perform those experiments. Aside from the magnetostrictive foil and the piezoelectric crystals, there wasn't anything in this project that could be purchased from a vendor.”

###

Robinson and Kemere are each associate professors of electrical and computer engineering and of bioengineering.

Additional co-authors include Shayok Dutta, Eric Lewis, Ziying Chen, Joshua Chen, Nishant Verma, Benjamin Avants and Ariel Feldman, all of Rice, and John O'Malley and Michael Beierlein, both of the University of Texas Health Science Center at Houston's McGovern Medical School.

The research was supported by the National Science Foundation (1250104, 1351692) and the National Institutes of Health (1U18EB029353-01, R21EY028397A).

Links and resources:

The DOI of the Neuron paper is: 10.1016/j.neuron.2020.05.019

A copy of the paper is available at: https://doi.org/10.1016/j.neuron.2020.05.019

IMAGES are available for download at:

https://news-network.rice.edu/news/files/2020/06/0608_MAGNETO-jf672-lg.jpg

CAPTION: A sample of Rice University's “magnetoelectric” film atop a bed of uncooked rice. Rice neuroengineers created the bi-layered film to power implantable neural stimulators that are approximately the size of a grain of rice. The film converts energy from a magnetic field directly into an electrical voltage, eliminating the need for a battery or wired power connection. (Photo by Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2020/06/0608_MAGNETO-fig-lg.jpg

CAPTION: To demonstrate the viability of miniature, magnetoelectric-powered neural stimulating technology, Rice University neuroengineers created tiny devices that were placed beneath the skin of rodents that were free to roam throughout their enclosures. The rodents preferred to be in portions of the enclosures where a magnetic field activated the stimulator and provided a small voltage to the reward center of their brains. (Image courtesy of J. Robinson/Rice University)

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Media Contact

Mike Williams
mikewilliams@rice.edu
713-348-6728

 @RiceUNews

http://news.rice.edu 

Media Contact

Mike Williams EurekAlert!

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Chimpanzee in a tropical forest demonstrating genetic adaptations for survival.

Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans

The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…