RNA basic building block produced biocatalytically for the first time

Graphical representation of the structure of the enyzm YeiN.
(c) Martin Pfeiffer

Researchers from TU Graz and acib succeed in the first enzyme-driven biocatalytic synthesis of nucleic acid building blocks. This facilitates the development of antiviral agents and RNA-based therapeutics.

Due to the COVID 19 pandemic and the associated intensive search for therapeutics and vaccines, the chemical substance class of nucleosides is experiencing an enormous increase in interest. Natural and synthetic nucleosides have an antiviral effect and can act as building blocks of ribonucleic acids (RNA). When incorporated into RNA, novel interactions within the macromolecule result with positive consequences for stability and biological effectiveness.

In medicinal chemistry, the molecular family of carbon (C)-nucleosides is particularly in demand. These differ from the naturally more frequently occurring nitrogen (N)-nucleosides – the classical building blocks of RNA – in the way the sugar is linked to the so-called nucleic base. Instead of a carbon-nitrogen bond, C-nucleosides have a carbon-carbon bond.

This is biochemically much more stable and gives active ingredients a longer biological half-life. For the first time, two researchers from Graz University of Technology and the acib competence centre (Austrian Centre of Industrial Biotechnology) have now succeeded in biocatalytically producing C-nucleosides with the help of enzymes. The concrete results have been published in Nature Communications.

Yes to the enzyme “YeiN”

Bernd Nidetzky, Head of the Institute of Biotechnology and Bioprocess Engineering at TU Graz and at the same time Scientific Director of the Austrian Centre of Industrial Biotechnology (acib), and Martin Pfeiffer from acib discovered and characterized in a study the enzyme “YeiN”, which can link the two nucleoside building blocks ribose-5-phosphates and uracil by means of a specific carbon bond. They are the first researchers worldwide to demonstrate an enzyme that is a suitable biocatalyst for the production of C-nucleosides.

Efficient and eco-friendly production

With the help of the catalytic power of “YeiN”, the Graz-based company was able to produce several derivatives of the important C-nucleoid pseudouridine. They were also able to show that one of these derivatives can be incorporated into RNA and thus enable the modification of RNA. This is particularly relevant for the production of RNA-based therapeutic products, as the incorporation of pseudouridine into the RNA increases stability and half-life and thus improves the effectiveness of therapeutic RNA, such as a vaccine.

“In our study we show that pseudouridine can be produced biocatalytically. Compared to a purely chemical synthesis, this is a much more efficient way, since fewer reaction steps and no toxic chemicals are required. The biocatalytic production of C-nucleosides is therefore a very strong, elegant alternative to classical chemical synthesis and even superior to it in terms of efficiency,” says Bernd Nidetzky. Based on the findings published in Nature Communications, research can now be conducted to expand the substrate spectrum of “YeiN”. The goal? The biocatalytic synthesis of further relevant C-nucleosides.

RNA vaccines

The first comprehensive vaccinations against COVID-19 with RNA vaccines have been running for a few days. These completely novel vaccines contain genetic information of the pathogen and induce cells to produce a viral protein, which is then presented to the immune system. The subsequent immune reaction protects the body from an actual virus infection. If one is already infected with the virus, antiviral drugs can prevent the virus from multiplying.

The C-nucleoside based drug Remdesivir has these necessary antiviral properties and is effective against a number of RNA viruses, including corona and ebola viruses. The active ingredient has received conditional approval in the EU for the treatment of COVID-19 patients. The biocatalytic production of C-nucleosides could provide further impetus for this new hope as well as RNA vaccines based on C-nucleosides.

This work is anchored in the Field of Expertise “Human & Biotechnology” https://www.tugraz.at/en/research/forschungsschwerpunkte-5-fields-of-expertise/h…, one of the five main fields of research at Graz University of Technology. The work originates from a collaboration between Graz University of Technology and acib and was supported by the Austrian Science Fund FWF.

Wissenschaftliche Ansprechpartner:

Bernd NIDETZKY
Univ.-Prof. Dipl.-Ing. Dr.techn.
TU Graz | Institute of Biotechnology and Biochemical Engineering
Phone: +43 316 873 8400
bernd.nidetzky@tugraz.at
http://www.tugraz.at

Martin PFEIFFER
Dipl.-Ing. BSc
acib GmbH
Mobile: +43 664 2173787
martin.pfeiffer@tugraz.at
http://www.acib.at

Originalpublikation:

Martin Pfeiffer, Bernd Nidetzky:
Reverse C-glycosidase reaction provides C-nucleotide building blocks of xenobiotic nucleic acids. Nature Communications, December 2020. DOI: 10.1038/s41467-020-20035-0. https://www.nature.com/articles/s41467-020-20035-0

Media Contact

Susanne Eigner Kommunikation und Marketing
Technische Universität Graz

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…