Keeping Sperm Cells on Track
Researchers point to a new mechanism underlying male infertility
One essential component of each eukaryotic cell is the cytoskeleton. Microtubules, tiny tubes consisting of a protein called tubulin, are part of this skeleton of cells. Cilia and flagella, which are antenna-like structures that protrude from most of the cells in our body, contain many microtubules. An example of flagell is the sperm tail, which is essential for male fertility and thus for sexual reproduction.
The flagellum has to beat in a very precise and coordinated manner to allow progressive swimming of the sperm. Failure to do so can lead to male infertility. Researchers at the Institut Curie in Paris, the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden, the research center caesar in Bonn together with the University of Bonn, the Institut Cochin in Paris and the Human Technopole in Milan now show that one particular enzymatic modification of the protein tubulin, called glycylation, is essential to keep sperm swimming in a straight line. These findings imply that a perturbation of this modification could underlie some forms of male infertility in humans.
Cells in our body make use of our DNA library to extract blueprints that contain the instructions to build structures and molecular machines called proteins. But the story does not end here: proteins can be modified by other proteins, called enzymes. That such modifications occur has been known for a long time, yet, surprisingly, their function is in many cases unknown. An excellent example of our lack of in-depth knowledge is the role of modifications of tubulin, the protein that forms microtubules. These are long filaments that are used to make scaffolds in cells.
While microtubules are highly similar in all cells of our organism, they fulfil a wide variety of functions. One of the most specialized functions of microtubules is found in the sperm tail or flagellum. Sperm flagella are essential for male fertility and thus for sexual reproduction. They have to beat in a very precise and coordinated manner to allow progressive swimming of the spermatozoids, and failure to do so can lead to male infertility. To keep sperm swimming in a straight line, the modification of the protein tubulin by enzymes is essential. One modification is called glycylation, and was so far among the least-explored modifications of tubulin.
Scientists at the Institut Curie in Paris, the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden and the center of advanced european studies and research (caesar) in Bonn together with the University of Bonn, the Institut Cochin in Paris, and the Human Technopole in Milan took a closer look at glycylation. They found that in the absence of this tubulin modification, the way the flagella beat is perturbed, resulting in sperm that mostly swim in circles. The first author of the study, Sudarshan Gadadhar from the Institut Curie explains: “The core of the sperm flagellum is composed of microtubules, along with tens of thousands of tiny molecular motors, called dyneins, that make it possible to rhythmically bend these microtubules to produce waves for movement and steering. The activity of these dynein motor proteins must be tightly coordinated. In the absence of glycylation, they became uncoordinated, and as a result, we suddenly saw sperm swimming in circles.”
To find this out, the authors of the study had created a mouse line that lacks the genetic blueprints for the enzymes that glycylate microtubules. “We observed functional defects on sperm from mice lacking glycylation, which resulted in a reduction of fertility. Since mice as a model system are known to have robust fertility, a similar defect in humans, could lead to male sterility” says Carsten Janke, CNRS (French National Centre for Scientific Research) researcher at the Institut Curie and one of the coordinators of the study.To find out why lack of glycylation led to perturbed sperm motility and male subfertility, the team used cryo-electron microscopy to visualize the molecular structure of the flagellum and of its molecular motors. Analysis of the mutant sperm flagella revealed that flagella were correctly built, but the mutation interfered with the coordinated activity of the axonemal dyneins – the motors that power the beating of the flagellum. This explains why the swimming of the sperm cells is perturbed.
Why is this discovery so important? The other coordinating authors, Gaia Pigino from MPI-CBG and the Human Technopole, and Luis Alvarez from the research center caesar, summarize: “This study, which shows how important glycylation is for the control of the dynein motors of the flagellum, is a prime example of how microtubule modifications directly affects the function of other proteins in cells. Our findings provide direct evidence that microtubules have an active role in regulating fundamental biological processes via a code of tubulin modifications. Further, this study points to a new mechanism underlying male infertility. Since sperm flagella are one of many types of cilia in our bodies, we expect similar tubulin modifications to be important in various cilia-related functions. Hence, our work opens a door to a deeper understanding of multiple diseases, such as developmental disorders, cancer, kidney diseases, or respiratory and vision disorders.”
About the Institut Curie
Institut Curie, France’s leading cancer center, combines an internationally-renowned research center with a cutting-edge hospital group that treats all types of cancer, including the rarest. Founded in 1909 by Marie Curie, Institut Curie employs 3,600 researchers, physicians, and health professionals across three sites (Paris, Saint-Cloud, and Orsay), working on its three missions: treatment, research, and teaching. A private foundation with public utility status, Institut Curie is authorized to receive donations and legacies, and thanks to the support of its donors, is able to make discoveries more quickly, improving treatments and quality of life for patients.
About the MPI-CBG
The Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), located in Dresden, is one of more than 80 institutes of the Max Planck Society, an independent, non-profit organization in Germany. 550 curiosity-driven scientists from over 50 countries ask: How do cells form tissues? The basic research programs of the MPI-CBG span multiple scales of magnitude, from molecular assemblies to organelles, cells, tissues, organs, and organisms.
About research center (caesar)
The center of advanced european studies and research (caesar) is one of more than 80 institutes of the Max Planck Society, an independent, non-profit organization in Germany. It is part of a cluster for neurosciences in the Bonn-Cologne region and has multiple ties with the University of Bonn and University of Cologne. caesar is a neuroethology institute that studies how the collective activity of the vast numbers of interconnected neurons in the brain gives rise to the plethora of animal behaviors.
About Human Technopole
Human Technopole is Italy’s new institute for life science based at the heart of MIND (Milano Innovation District), the area that hosted Milan EXPO 2015. HT’s mission is to improve human health and well-being, by: carrying out frontier research in the life sciences aimed at developing novel approaches in preventive and personalised medicine; setting up and operating scientific services and facilities to be made available to external users to respond to the needs of the scientific community; training the next generation of scientists; promoting innovation and progress through technology transfer. Once fully operational it will employ over 1.000 scientists from all over the world.
Wissenschaftliche Ansprechpartner:
Dr. Carsten Janke
Carsten.janke@curie.fr
Institut Curie, PSL Research University, CNRS UMR3348,
F-91405 Orsay, France
Dr. Gaia Pigino
pigino@mpi-cbg.de
Max Planck Institute of Molecular Cell Biology and Genetics,
D-01307 Dresden, Germany
Human Technopole,
I-20157 Milan, Italy
Dr. Luis Alvarez
luis.alvarez@caesar.de
Center of Advanced European Studies and Research,
D-53175 Bonn, Germany
Originalpublikation:
Sudarshan Gadadhar, Gonzalo Alvarez Viar, Jan Niklas Hansen, An Gong, Aleksandr Kostarev, Côme Ialy-Radio, Sophie Leboucher, Marjorie Whitfield, Ahmed Ziyyat, Aminata Touré, Luis Alvarez, Gaia Pigino, Carsten Janke: “Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility”, Science, 7. January 2021. DOI: 10.1126/science.abd4914
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…