A new spintronic phenomenon
Chiral-spin rotation found in non-collinear antiferromagnet.
Researchers at Tohoku University and the Japan Atomic Energy Agency (JAEA) have discovered a new spintronic phenomenon – a persistent rotation of chiral-spin structure.
Their discovery was published in the journal Nature Materials on May 13, 2021.
Tohoku University and JAEA researchers studied the response of chiral-spin structure of a non-collinear antiferromagnet Mn3Sn thin film to electron spin injection and found that the chiral-spin structure shows persistent rotation at zero magnetic field. Moreover, their frequency can be tuned by the applied current.
“The electrical control of magnetic structure has been of paramount interest in the spintronics community for the last quarter of a century. The phenomenon shown here provides a very efficient scheme to manipulate magnetic structures, offering new opportunities for application, such as oscillators, random number generators, and nonvolatile memory,” said Professor Shunsuke Fukami, who spearheaded the project.
Figure 1 compares the efficiency of manipulating the magnetic structure on a non-collinear antiferromagnet, as seen in the present work, with those reported for other material systems. The current-induced chiral-spin rotation is much more efficient even for thick magnetic layers above 20 nm.
The schematics of chiral-spin rotation as well as the experimental setup are shown in figure 2.
The researchers used a high-quality heterostructure consisting of non-collinear antiferromagnet Mn3Sn sandwiched between heavy metals W/Ta and Pt. They revealed that, when a current is applied to the heterostructure, the chiral-spin structure rotates persistently at zero magnetic field because of the torque originating from the spin current generated in the heavy metals. Meanwhile, the rotation frequency, typically above 1 GHz, depends on the applied current.
Spintronics is an interdisciplinary field, where electric and magnetic degrees of freedom of electrons are utilized simultaneously, allowing for an electrical manipulation of magnetic structure. Representative schemes established so far are summarized in figure 3.
Magnetization switching, magnetic-phase transition, oscillation, and resonance have been observed in ferromagnets, which are promising since they may lead to the realization of functional devices in nonvolatile memory, wireless communication, and so on.
Additionally, in antiferromagnets, the 90-degree rotation of Néel vector in collinear systems and the 180 degree switching of chiral-spin structures in non-collinear systems have been observed recently. The chiral-spin persistent rotation in the current work is totally different from all the previously found phenomena and thus should open a new horizon of the spintronics research.
“The obtained insight is not only interesting in terms of physics and material science but also attractive for functional device applications,” added Dr. Yutaro Takeuchi, the first author of the paper. “We would like to further improve the material and device technique in the near future and demonstrate new functional devices such as tunable oscillator and high-quality true random number generator.”
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…