Suppressing meta-holographic artifacts by laser coherence tuning
Metasurface holograms (meta-holograms) are ultra-thin artificial surfaces designed to shape incident light and project it to extremely wide angles. Meta-holograms have opened up numerous possibilities such as light multiplexing, information processing, 3D display, high-density data storage, and optical encoding.
Despite of these remarkable advances, the road to practical applications of meta-holograms is hindered by artifacts that originate from strong interactions between the building blocks of the meta-holographic surface and inevitable fabrication defects, ultimately causing distortion and degradation to the holographic image. The small dimensions of the meta-hologram, together with the random nature of fabrication defects, make the artifacts problem extremely difficult to correct.
In a new paper published in Light Science & Application, a team of scientists, led by Hui Cao from Yale University, USA, Qinghai Song and Shumin Xiao from Harbin Institute of Technology (Shenzhen), China, and co-workers have developed an efficient method to suppress the holographic artifacts while maintaining the image quality. Their method is based on fine-tuning of the coherence of illumination, implemented with a degenerate cavity laser, a unique class of lasers which allows a precise and continuous tuning of the spatial coherence of emission with little change in total power and temporal coherence.
The majority of lasers operates with a single or a few spatial modes, and produces highly coherent emission. When the laser light is used to illuminate a meta-hologram, the interference of scattered waves produce coherent artifacts and severely distort the images. The scientists gradually decrease the coherence of laser illumination to amend the holographic artifacts. However, if the coherence is too low, the fine details of the holographic image will blur. Thus it is essential to find the optimal degree of coherence to suppress artifacts without a significant loss of spatial resolution. This was realized with a novel laser source whose spatial coherence of emission can be tuned gradually, accurately and efficiently.
The scientists summarize the operational principle of their novel technique:
“We design a bright laser source with a precise and continuous tuning of the spatial coherence. The tuning is remarkably energy efficient with low power variation. The laser is then used to illuminate a meta-hologram. The precise tuning allows reaching the right level of coherence required to suppress the coherent artifacts without significant blurring of the holographic image.”
“Compared to the existing methods of lowering the coherence of conventional lasers, our degenerate cavity laser exhibits extremely fast decoherence, thus enabling high-speed artifact-free meta-holography with no pre- or post-processing of any kind.” they added.
“The new method can be used to dramatically enhance the image quality of compact, dynamical holographic projection displays. This breakthrough will open a new venue for future applications of meta-holograms in augmented reality, optical storage, beam multiplexing, nonlinear holography and optical manipulation.” the scientists forecast.
Related Journal Article
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…