Evolution of Whale Hearing Unfolds in Fossil Record
An international team of scientists has traced the evolution of hearing in modern cetaceans (whales, dolphins and porpoises). “This study of the early evolution of whales demonstrates the changes that took place in whales outer and middle ears, required for the transition from a land-based to a marine-based existence,” said Rich Lane, director of the National Science Foundation (NSF)s geology and paleontology program, which funded the research.
The findings are published in the Aug. 12 issue of the journal Nature.
The ear is the most important sense organ for modern toothed whales, say scientists, because these whales locate their prey using echolocation. Directional hearing is critical: A blind such whale could find food without much trouble; a deaf one would starve.
The study documents how hearing in these whales evolved. The research is based on cetacean fossils representing four groups of early whales. The earliest cetaceans, pakicetids (those that swam in ancient seas 50 million years ago), used the same sound transmission system as did land mammals, and so had poor underwater hearing. More recent cetaceans, remingtonocetids and protocetids (those that lived 43- 46 million years ago), retained the land-mammal system, but also developed a new sound transmission system.
“The fossils document the ways in which cetacean hearing has changed, starting with ear fossils of whales land ancestors and ending with the ear of near- modern looking whales,” said Hans Thewissen, an anatomist at the Northeastern Ohio Universities College of Medicine (NEOUCOM). Thewissen and NEOUCOM researcher Sirpa Nummela led the study.
The newer system was similar to that of modern whales. The later whales could hear better in water than pakicetids could, and could also hear in air, but hearing in both media was compromised by the existence of two systems. With the advent of basilosauroids (approximately 40 million years ago), the old landmammal ear disappeared, and the modern cetacean sound transmission system began its development. Although basilosaurids were not echolocators (they lacked the soundemission equipment of later echolocators), they had taken a major step forward in refining underwater sound reception.
In addition to Thewissen and Nummela, the research team includes Sunil Bajpai, Indian Institute of Technology, Roorkee; S. Taseer Hussain, Howard University College of Medicine; and Kishor Kumar, Wadia Institute of Himalayan Geology, Dehradun, India. Support for the project was also provided by the Department of Science and Technology, India.
Media Contact
More Information:
http://www.nsf.govAll latest news from the category: Studies and Analyses
innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.
Newest articles
A ‘language’ for ML models to predict nanopore properties
A large number of 2D materials like graphene can have nanopores – small holes formed by missing atoms through which foreign substances can pass. The properties of these nanopores dictate many…
Clinically validated, wearable ultrasound patch
… for continuous blood pressure monitoring. A team of researchers at the University of California San Diego has developed a new and improved wearable ultrasound patch for continuous and noninvasive…
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….