A dimmer switch for human brain cell growth
Controlling how cells grow is fundamental to ensuring proper brain development and stopping aggressive brain tumors. The network of molecules that control brain cell growth is thought to be complex and vast, but now McGill University researchers provide striking evidence of a single gene that can, by itself, control brain cell growth in humans.
In a paper published recently in Stem Cell reports, Carl Ernst, an Associate Professor in the Department of Psychiatry at McGill University and his team have shown that the loss of the FOXG1 gene in brain cells from patients with severe microcephaly – a disease where the brain does not grow large enough – reduces brain cell growth.
Using genetic engineering, they turned on FOXG1 in cells from a microcephaly patient to different levels and showed corresponding increases in brain cell growth. They have uncovered a remarkable dimmer switch to turn brain cell growth up or down.
Their research indicates that a single gene could potentially be targeted to stop brain tumour cells from growing. Or that future gene therapy might allow this same gene to be turned up in patients with microcephaly or other neurodevelopmental disorders.
“FOXG1 dose tunes cell proliferation dynamics in human forebrain progenitor cells” by Nuwan C. Hettige et al. was published in Stem Cell Reports
Journal: Stem Cell Reports
DOI: 10.1016/j.stemcr.2022.01.010
Subject of Research: Human tissue samples
Article Title: FOXG1 dose tunes cell proliferation dynamics in human forebrain progenitor cells
Article Publication Date: 8-Mar-2022
Media Contact
Katherine Gombay
McGill University
katherine.gombay@mcgill.ca
Cell: 514-717-2289
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…