Don’t underestimate undulating graphene

A theory by Rice University researchers suggests growing graphene on a surface that undulates like an egg crate would stress it enough to create a minute electromagnetic field. The phenomenon could be useful for creating 2D electron optics or valleytronics devices.
Illustration by Henry Yu/Rice University

Rice theorists show unique electronics made possible by wavy patterns that channel electrons.

Lay some graphene down on a wavy surface, and you’ll get a guide to one possible future of two-dimensional electronics.

Rice University scientists put forth the idea that growing atom-thick graphene on a gently textured surface creates peaks and valleys in the sheets that turn them into “pseudo-electromagnetic” devices.

The channels create their own minute but detectable magnetic fields. According to a study by materials theorist Boris Yakobson, alumnus Henry Yu and research scientist Alex Kutana at Rice’s George R. Brown School of Engineering, these could facilitate nanoscale optical devices like converging lenses or collimators.

Their study appears in the American Chemical Society’s Nano Letters.

They also promise a way to achieve a Hall effect — a voltage difference across the strongly conducting graphene —that could facilitate valleytronics applications that manipulate how electrons are trapped in “valleys” in an electronic band structure.

Valleytronics are related to spintronics, in which a device’s memory bits are defined by an electron’s quantum spin state. But in valleytronics, electrons have degrees of freedom in the multiple momentum states (or valleys) they occupy. These can also be read as bits.

This is all possible because graphene, while it may be one of the strongest known structures, is pliable enough as it adheres to a surface during chemical vapor deposition.

“Substrate sculpting imparts deformation, which in turn alters the material electronic structure and changes its optical response or electric conductivity,” said Yu, now a postdoctoral researcher at Lawrence Livermore National Laboratory. “For sharper substrate features beyond the pliability of the material, one can engineer defect placements in the materials, which creates even more drastic changes in material properties.”

Yakobson compared the process to depositing a sheet of graphene on an egg crate. The bumps in the crate deform the graphene, stressing it in a way that creates an electromagnetic field even without electrical or magnetic input.

“The endless designs of substrate shapes allow for countless optical devices that can be created, making possible 2D electron optics,” Yakobson said. “This technology is a precise and efficient way of transmitting material carriers in 2D electronic devices, compared to traditional methods.”

Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry.

The Office of Naval Research (N00014-18-1-2182) and the Army Research Office (W911NF-16-1-0255) supported the research.

Read the abstract at https://pubs.acs.org/doi/10.1021/acs.nanolett.2c00103.

This news release can be found online at https://news.rice.edu/news/2022/dont-underestimate-undulating-graphene.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Yakobson Research Group: https://biygroup.blogs.rice.edu

Materials Science and NanoEngineering: https://msne.rice.edu

George R. Brown School of Engineering: https://engineering.rice.edu

Image for download:

https://news-network.rice.edu/news/files/2022/03/0328_WAVE-1-WEB.jpg

A theory by Rice University researchers suggests growing graphene on a surface that undulates like an egg crate would stress it enough to create a minute electromagnetic field. The phenomenon could be useful for creating 2D electron optics or valleytronics devices. (Credit: Illustration by Henry Yu/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 4,052 undergraduates and 3,484 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Journal: Nano Letters
DOI: 10.1021/acs.nanolett.2c00103
Article Title: Electron Optics and Valley Hall Effect of Undulated Graphene
Article Publication Date: 15-Mar-2022
COI Statement: None

Media Contacts

Mike Williams
Rice University
mikewilliams@rice.edu
Office: 713-348-6728

Jeff Falk
Rice University
jfalk@rice.edu
Office: 713-348-6775

Media Contact

Mike Williams
Rice University

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lights, camera, action!

Coronavirus spike proteins can be selectively detected in 5 minutes. Light-induced immunoassay coated with novel coronavirus spike proteins found highly sensitive even with weak light like a laser pointer. Like…

When ions go hiking

New insights into solvation kinetics at electrocatalyst surfaces. The ion’s pathway is strongly influenced by a process that is ubiquitous across bio- and electrochemistry: ions need to reorganize their solvation…

How remarkable diversity in heat tolerance can help protect coral reefs

New research out of Southern Cross University has found previously undocumented variation in coral heat tolerance on the Great Barrier Reef, giving hope that corals’ own genetic resources may hold…

Partners & Sponsors