Quenching by laser increases graphene quality

Graphene with defects
Credit: Daria Sokol/MIPT Press Office

Russian scientists have found out why, instead of simply burning down at high temperatures, graphene oxide opens the door to a promising and inexpensive graphene production method. The research was published in the journal Carbon.

It has been over a decade since the Nobel Prize was awarded for graphene experimental research, but scientists still have not found a way to obtain high-quality large-area graphene, which would be cheap, efficient and scalable for industrial needs. Graphene reduction from graphene oxide by laser irradiation appears as a promising route: with graphene oxide produced from ordinary graphite using chemical methods, the laser-aided reduction technique holds much promise in terms of cost and controllability of the resulting material quality.

A few years ago, a group of Skoltech researchers discovered that heating graphene oxide to 3300-3800 K, even under atmospheric conditions, can produce graphene of fairly high quality.

The result came as a big surprise for our colleagues: the temperature was very high, yet they obtained well-structured material. Carbon materials burn readily in atmospheric oxygen at 600-800 K or higher, whereas in the experiment at much higher temperatures graphene acquired good structural properties,” − Nikita Orekhov, deputy head of the MIPT Laboratory of Supercomputer Methods in Condensed Matter Physics, explains.To figure out the reason for this unexpected effect, we decided to study the high-temperature graphene oxide reduction process using supercomputer atomistic modeling* and perform additional research following on our colleagues’ experiment design.

The researchers found that, on the one hand, at high temperatures (T > 3000 K) oxygen atoms from the gaseous environment interact intensively with graphene, oxidizing and destroying it. On the other hand, fast annealing of the crystal lattice begins at the same temperatures, which allows to eliminate defects. During the annealing, the lattice structure straightens out instead of falling apart.

It turns out that two opposite processes occur concurrently in different places within a material exposed to laser pulses: burning, or destruction, is localized near the defects and boundaries of graphene sheets where carbon atoms are the most chemically active, while annealing occurs primarily in the center of the sheet where atoms prefer to settle back into a stable configuration,” Stanislav Evlashin, leading research scientist at the Skoltech Center for Materials Technologies (CMT), comments.

The findings shed light on the behavior of graphene oxide at extreme temperatures, where straightforward experiments are hardly possible. Understanding the processes described in the paper can help further develop and optimize the methods for obtaining high-quality graphene with large-area monocrystals.

*Atomistic modeling helps to numerically describe and predict the behavior of individual atoms, typically in a very small amount of matter. These methods are extremely computationally expensive and require high-performance supercomputers that can solve a task by using hundreds and even thousands of processors simultaneously.

Journal: Carbon
DOI: 10.1016/j.carbon.2022.02.018
Article Title: Mechanism of graphene oxide laser reduction at ambient conditions: Experimental and ReaxFF study
Article Publication Date: 9-Feb-2022

Media Contact

Ilyana Zolotareva
Skolkovo Institute of Science and Technology (Skoltech)
I.Zolotareva@skoltech.ru
Cell: (915) 3500690

Media Contact

Ilyana Zolotareva
Skolkovo Institute of Science and Technology (Skoltech)

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lights, camera, action!

Coronavirus spike proteins can be selectively detected in 5 minutes. Light-induced immunoassay coated with novel coronavirus spike proteins found highly sensitive even with weak light like a laser pointer. Like…

When ions go hiking

New insights into solvation kinetics at electrocatalyst surfaces. The ion’s pathway is strongly influenced by a process that is ubiquitous across bio- and electrochemistry: ions need to reorganize their solvation…

How remarkable diversity in heat tolerance can help protect coral reefs

New research out of Southern Cross University has found previously undocumented variation in coral heat tolerance on the Great Barrier Reef, giving hope that corals’ own genetic resources may hold…

Partners & Sponsors