When worlds collide
Studying impact craters to uncover the secrets of the solar system.
While for humans the constants might be death and taxes, for planets the constants are gravity and collisions.
Brandon Johnson studies the latter, using information about impacts to understand the history and the composition of planets, moons, asteroids and meteorites throughout the solar system.
“Impact cratering is the most ubiquitous surface process shaping planetary bodies,” Johnson said. “Craters are found on almost every solid body we’ve ever seen. They are a major driver of change in planetary bodies. They drive the evolution of planetary crusts. All the planets and asteroids were built from a series of impacts. Studying impacts can help us determine the composition and structure of planets.”
As an associate professor in the Department of Earth, Atmospheric, and Planetary Sciences in Purdue University’s College of Science, Johnson has studied almost every major planetary body in the solar system. And the time scale of his research ranges from relatively recent impacts to nearly the beginning of the solar system itself.
Collecting clues about collisions helps Johnson reconstruct the environment in which the collisions took place, offering deep insights into how and when bodies formed. His research is helping humans explore the planetary bodies in the solar system with only physics, math and a computer. Space missions and laboratory analyses provide a constant supply of new data and questions to work on.
“Most meteorites contain chondrules — small, previously molten, particles,” Johnson said. “Essentially, by studying the formation of chondrules by impacts, we can better understand what was going on in the nascent solar system. For example, based on one impact, we were able to determine that Jupiter had already formed right around 5 million years after the first solar system solids, changing the timeline of our understanding of the solar system.”
Johnson and his lab staff incorporate known factors about the composition and physics of planetary bodies into complex computer models, running the models through a range of conditions and comparing the results with observed phenomena. Analyzing movements and collisions can offer insights into the composition of asteroids and meteorites, helping scientists understand how elements like water and metal are distributed through a solar system. By studying impact craters and basins on places like Pluto, Venus and icy moons, and the mechanics of other processes occurring on Europa and asteroids like Psyche, his team can understand more about their interiors; whether they have molten cores and plate tectonics, for example, or whether they have liquid oceans.
His work doesn’t just span the solar system. He studies impacts closer to home, too, including on Earth’s own moon and terrestrial impacts that may have affected the way Earth’s crust, atmosphere and biosphere evolved.
An online impact calculator tool developed by the late Jay Melosh, Johnson’s mentor and former Distinguished Professor of Earth, Atmospheric and Planetary Sciences, allows anyone to study the impacts of various rocks into the Earth. Johnson and his team are rebuilding the tool for a new generation of planetary students.
About Purdue University
Purdue University is a top public research institution developing practical solutions to today’s toughest challenges. Ranked in each of the last four years as one of the 10 Most Innovative universities in the United States by U.S. News & World Report, Purdue delivers world-changing research and out-of-this-world discovery. Committed to hands-on and online, real-world learning, Purdue offers a transformative education to all. Committed to affordability and accessibility, Purdue has frozen tuition and most fees at 2012-13 levels, enabling more students than ever to graduate debt-free. See how Purdue never stops in the persistent pursuit of the next giant leap at https://stories.purdue.edu.
Media contact: Brittany Steff, bsteff@purdue.edu
Source: Brandon C. Johnson, bcjohnson@purdue.edu
Journal: Icarus
DOI: 10.1016/j.icarus.2021.114869
Article Title: The role of target strength on the ejection of martian meteorites
Article Publication Date: 15-Mar-2022
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Largest magnetic anisotropy of a molecule measured at BESSY II
At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a…
Breaking boundaries: Researchers isolate quantum coherence in classical light systems
LSU quantum researchers uncover hidden quantum behaviors within classical light, which could make quantum technologies robust. Understanding the boundary between classical and quantum physics has long been a central question…
MRI-first strategy for prostate cancer detection proves to be safe
Active monitoring is a sufficiently safe option when prostate MRI findings are negative. There are several strategies for the early detection of prostate cancer. The first step is often a…