Photonic integrated erbium doped amplifiers reach commercial performance

An erbium-doped waveguide amplifier on a photonic integrated chip in 1X1 cm2 size, with green emission from excited erbium ions.
Credit: EPFL Laboratory of Photonics and Quantum Measurements (LPQM)/Niels Ackermann

Boosting light power revolutionizes communications and autopilots.

Erbium-doped fiber amplifiers (EDFAs) are devices that can provide gain to the optical signal power in optical fibers, often used in long-distance communication fiber optic cables and fiber-based lasers. Invented in the 1980s, EDFAs are arguably one of the most important inventions, and have profoundly impacted our information society enabling signals to be routed across the Atlantic and replacing electrical repeaters.

What is interesting about erbium ions in optical communications is that they can amplify light in the 1.55 mm wavelength region, which is where silica-based optical fibers have the lowest transmission loss. The unique electronic intra-4-f shell structure of erbium – and rare-earth ions in general – enables long-lived excited states when doped inside host materials such as glass. This provides an ideal gain medium for simultaneous amplification of multiple information-carrying channels, with negligible cross-talk, high temperature stability and low noise figure.

Optical amplification is also used in virtually all laser applications, from fiber sensing and frequency metrology, to industrial applications including laser-machining and LiDAR. Today, optical amplifiers based on rare-earth ions have become the workhorse for optical frequency combs (2005 Nobel Prize in Physics), which are used to create the world’s most precise atomic clocks.

Achieving light amplification with rare-earth ions in photonic integrated circuit can transform integrated photonics. Already in the 1990s, Bell Laboratories were looking into erbium-doped waveguide amplifiers (EDWAs), but ultimately abandoned them because their gain and output power could not match fiber-based amplifiers, while their fabrication doesn’t work with contemporary photonic integration manufacturing techniques.

Even with the recent rise of integrated photonics, renewed efforts on EDWAs have only been able to achieve less than 1 mW output power, which is not enough for many practical applications. The problem here has been high waveguide background loss, high cooperative upconversion – a gain-limiting factor at high erbium concentration, or the long-standing challenge in achieving meter-scale waveguide lengths in compact photonic chips.

Now, researchers at EPFL, led by Professor Tobias J. Kippenberg, have built an EDWA based on silicon nitride (Si3N4) photonic integrated circuits of a length up to half meter on a millimeter-scale footprint, generating a record output power of more than 145 mW and providing a small-signal net gain above 30 dB, which translates to over 1000-fold amplification in the telecommunication band in continuous operation. This performance matches the commercial, high-end EDFAs, as well as state-of-the-art heterogeneously integrated III-V semiconductor amplifiers in silicon photonics.

“We overcame the longstanding challenge by applying ion implantation – a wafer-scale process that benefits from very low cooperative upconversion even at a very high ion concentration – to the ultralow-loss silicon nitride integrated photonic circuits,” says Dr Yang Liu, a researcher in Kippenberg’s lab, and the study’s lead scientist.

“This approach allows us to achieve low loss, high erbium concentration, and a large mode-ion overlap factor in compact waveguides with meter-scale lengths, which have previously remained unsolved for decades,” says Zheru Qiu, a PhD student and co-author of the study.

“Operating with high output power and high gain is not a mere academic achievement; in fact, it is crucial to the practical operation of any amplifier, as it implies that any input signals can reach the power levels that are sufficient for long-distance high-speed data transmission and shot-noise limited detection; it also signals that high-pulse-energy femtosecond-lasers on a chip can finally become possible using this approach,” says Kippenberg.

The breakthrough signals a renaissance of rare-earth ions as viable gain media in integrated photonics, as applications of EDWAs are virtually unlimited, from optical communications and LiDAR for autonomous driving, to quantum sensing and memories for large quantum networks. It is expected to trigger follow-up studies that cover even more rare-earth ions, offering optical gain from the visible up to the mid-infrared part of the spectrum and even higher output power.

Reference

Yang Liu, Zheru Qiu, Xinru Ji, Anton Lukashchuk, Jijun He, Johann Riemensberger, Martin Hafermann, Rui Ning Wang, Junqiu Liu, Carsten Ronning, and Tobias J. Kippenberg. A photonic integrated circuit based erbium-doped amplifier. Science, 17 June 2022. DOI: 10.1126/science.abo2631

Journal: Science
DOI: 10.1126/science.abo2631
Article Title: A photonic integrated circuit based erbium-doped amplifier.
Article Publication Date: 17-Jun-2022

Media Contact

Nik Papageorgiou
Ecole Polytechnique Fédérale de Lausanne
n.papageorgiou@epfl.ch
Office: 41-216-932-105

Expert Contact

Tobias J. Kippenberg
Ecole Polytechnique Fédérale de Lausanne
tobias.kippenberg@epfl.ch
Office: +41 21 693 44 28

www.epfl.ch

Media Contact

Tobias J. Kippenberg
Ecole Polytechnique Fédérale de Lausanne

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…