Add-on device makes home furnaces cleaner, safer and longer-lasting

ORNL’s award-winning ultraclean condensing high-efficiency natural gas furnace features an affordable add-on technology that can remove more than 99.9% of acidic gases and other emissions. The technology can also be added to other natural gas-driven equipment such as water heaters, commercial boilers and industrial furnaces.
Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Natural gas furnaces not only heat your home, they also produce a lot of pollution.

Even modern high-efficiency condensing furnaces produce significant amounts of corrosive acidic condensation and unhealthy levels of nitrogen oxides, carbon monoxide, hydrocarbons and methane. These emissions are typically vented into the atmosphere and end up polluting our soil, water and air.

Now, scientists at the Department of Energy’s Oak Ridge National Laboratory have developed an affordable add-on technology that removes more than 99.9% of acidic gases and other emissions to produce an ultraclean natural gas furnace. This acidic gas reduction, or AGR, technology can also be added to other natural gas-driven equipment such as water heaters, commercial boilers and industrial furnaces.

“Just as catalytic converters help reduce emissions from billions of vehicles worldwide, the new AGR technology can virtually eliminate problematic greenhouse gases and acidic condensation produced by today’s new and existing residential gas furnaces,” said Zhiming Gao, staff researcher with ORNL’s Energy Science and Technology Directorate. “An eco-friendly condensate eliminates the need to use corrosion-resistant stainless steel materials for furnace heat exchangers, which reduces manufacturing costs.”

To demonstrate the effectiveness of acidic gas reduction in a furnace, the researchers fabricated an AGR catalyst, enclosed it in a metal housing and installed the device on a standard commercially available high-efficiency condensing furnace. Results after a 400-hour reliability and durability test showed the AGR almost completely removed harmful emissions from the flue gas and produced a nonacidic condensate with a neutral pH level.

To examine the internal condition and soot distribution of the post-test AGR without damaging the device’s gas flow-through channels, the scientists used neutron computed tomography at ORNL’s High Flux Isotope Reactor, or HFIR. Unlike X-rays, neutrons can penetrate the metal housing to record images that are then used to produce 2D and 3D representations of the used device.

“Such insights will enable improved AGR device designs for a more uniform and self-cleaning gas flow pattern,” said Gao. “This will also help alleviate excessive soot accumulation to enhance AGR-enabled furnace performance.”

Soot particles, which typically form because of the incomplete combustion of hydrocarbons, contain substantial hydrogen. Neutrons are especially good at detecting and mapping hydrogen and other light elements.

“Neutron imaging and mapping after the AGR test provided details about how the flue gas flowed through the AGR, which revealed the heavy accumulation of soot particles in the middle of the catalyst,” said ORNL’s Yuxuan Zhang, a neutron instrument scientist at HFIR.

AGR technology would allow furnace manufacturers to use materials that are more affordable than the stainless steels used in most heat exchangers. This increased affordability could allow furnace manufacturers to sell more high-efficiency furnaces that meet California’s proposed new standards for residential and commercial furnace emissions.

“Currently, AGR-enabled furnaces would require offline regeneration of the device about once every three years under normal use conditions,” Gao said. “The AGR unit could be removed by a homeowner or technician and carried to a regeneration and recycling location. This would be similar to how consumers bring their empty natural gas tanks for their outdoor grills to a dealer to exchange them for full tanks.”

In 2022, the ORNL AGR technology received a coveted R&D 100 award and was selected for targeted investment through ORNL’s Technology Innovation Program.

The research was sponsored by the DOE Building Technologies Office and used resources at ORNL’s Building Technologies Research and Integration Center, HFIR and the Center for Nanophase Materials Sciences, or CNMS.

HFIR and CNMS are DOE Office of Science user facilities. UT-Battelle manages ORNL for the Department of Energy’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. The Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

Journal: Chemical Engineering Journal
DOI: 10.1016/j.cej.2022.140099
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Nondestructive neutron imaging diagnosis of acidic gas reduction catalyst after 400-Hour operation in natural gas furnace
Article Publication Date: 15-Feb-2023
COI Statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Media Contact

Paul Boisvert
DOE/Oak Ridge National Laboratory
BoisvertPL@ornl.gov
Office: 502-229-4466
Cell: 502-229-4466

www.ornl.gov

Media Contact

Paul Boisvert
DOE/Oak Ridge National Laboratory

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Organic matter on Mars was formed from atmospheric formaldehyde

Although Mars is currently a cold, dry planet, geological evidence suggests that liquid water existed there around 3 to 4 billion years ago. Where there is water, there is usually…

Engineers 3D print sturdy glass bricks for building structures

The interlocking bricks, which can be repurposed many times over, can withstand similar pressures as their concrete counterparts. What if construction materials could be put together and taken apart as…

New organic thermoelectric device

… that can harvest energy at room temperature. Researchers have succeeded in developing a framework for organic thermoelectric power generation from ambient temperature and without a temperature gradient. Researchers have…

Partners & Sponsors