Modeling the turtle brain provides insights

Using computer simulations, MPIBR researchers zoom into how activations of single neurons are routed in cortical networks.
(c) Max Planck Institute for Brain Research / Julia Kuhl

Routing activity in the visual cortex.

A new study by researchers at the Max Planck Institute for Brain Research uses computer simulations to explore how patterns of spikes propagate in neuronal networks constrained by experimental data from the turtle visual cortex. The researchers found that rare but strong connections in the network could promote the reliability of propagation, providing a substrate to easily halt or promote propagation, resulting in a highly reliable system to route activity within these networks. The research provides insight into how neurons in the brain communicate with one another and how this communication can be reliably controlled.

How reliably can networks of interconnected neurons propagate activity? Two factors argue “very unreliably”: neurons receive input from many other neurons in the network through weak connections and neuronal responses vary significantly under multiple presentations of the same stimulus. Nonetheless, repeatable patterns of activity have been measured in the brains of a variety of species, including mice, humans, birds, and turtles. These patterns involve the activation of the same network of neurons in the same temporal order, suggesting that the propagation of activity in the networks is somehow more reliable than previously believed.

Previous experiments in the laboratory of Professor Gilles Laurent, Director at the Max Planck Institute for Brain Research, had already challenged these expectations, showing that the activation (a spike) from even a single neuron in the turtle cortex can trigger patterns of activity in the network. However, the network mechanisms behind the reliable propagation of these spikes remain unclear.

Juan Luis Riquelme, a PhD student working with Julijana Gjorgjieva, research group leader at the Max Planck Institute for Brain Research and Professor at TU Munich, used computer simulations to investigate the mechanism underlying activity propagation in neuronal network models. Their study reveals the network connectvity supporting the generation of sequential neural responses by a single spike. The networks are constrained by recordings from the turtle cortex, explaining how single spikes might be able to have such an outsized effect on broad-scale neural activity.

The researchers found that rare but strong connections in the recurrent network could promote the reliability of propagation despite the presence of noisy activity from other interconnected neurons. The team observed that having a few strong connections can easily halt or promote propagation, resulting in a highly reliable system to route activity within the networks. In contrast, having many weak connections makes propagation flexible. This routing could be context-dependent, with either external inputs or ongoing network activity determining the final path of propagation within the network. Importantly, the researchers found that these activity patterns can be separated into individual modules which can be independently activated and combined. This suggests that the brain is capable of generating a vast number of different but reliable patterns of activity in response to different stimuli. These findings have important implications for our understanding of how the brain controls the flow of information and how it processes different stimuli.

Overall, this new computational study provides insights into how neurons in the brain communicate with one another and how this communication can be reliably controlled. As turtles are closely related to ancestral amniotes, understanding reliable propagation in their simpler cortices may provide insight into the fundamental operation of networks of neurons across multiple species. Further research in this area could lead to insights into how the brain processes information and inform new development on artificial networks.

Wissenschaftliche Ansprechpartner:

Luis Riquelme
PhD Student
Max Planck Institute for Brain Research
juan.riquelme@brain.mpg.de

Julijana Gjorgjieva, Ph.D.
Research Group Leader
Max Planck Institute for Brain Research
gjorgjieva@brain.mpg.de

Originalpublikation:

Juan Luis Riquelme, Mike Hemberger, Gilles Laurent, Julijana Gjorgjieva
Single spikes drive sequential propagation and routing of activity in a cortical network
eLife, 2023

DOI: https://dx.doi.org/10.7554/eLife.79928

https://www.brain.mpg.de/

Media Contact

Silke Wolf Press and Public Relations
Max-Planck-Institut für Hirnforschung

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Organic matter on Mars was formed from atmospheric formaldehyde

Although Mars is currently a cold, dry planet, geological evidence suggests that liquid water existed there around 3 to 4 billion years ago. Where there is water, there is usually…

Engineers 3D print sturdy glass bricks for building structures

The interlocking bricks, which can be repurposed many times over, can withstand similar pressures as their concrete counterparts. What if construction materials could be put together and taken apart as…

New organic thermoelectric device

… that can harvest energy at room temperature. Researchers have succeeded in developing a framework for organic thermoelectric power generation from ambient temperature and without a temperature gradient. Researchers have…

Partners & Sponsors