The centrosome plays an important role in neuron migration

Microscope image of a mouse brain that was genetically changed in its embryonic stage. The scientists looked at two groups of neurons: one group that only had a special dye (magenta) and another group that had a dye plus were made to express a specific peptide blocking the centrosome from forming microtubules of the cell (yellow). The neurons in the first group (magenta) reached a specific part of the brain normally, but the neurons in the second group (yellow) didn't migrate to that part of the brain properly. However, they were still able to form connections between cells just like the first group. Source: DZNE / Sebastian Dupraz - RG Bradke

Researchers from the DZNE have solved an important puzzle in neurobiology: the wiring and the movement of nerve cells are interwoven, but separately controlled.

The study focuses on neuronal growth and migration: As nerve cells form, they wire the brain to enable communication with other nerve cells. One of these wires, the axon, becomes long; these wires are a basis for neuronal networks. At the same time, nerve cells migrate to a specific place in the brain, the cortex. Remarkably, these dynamic processes are separately controlled: The axon continues to grow to connect with its target cells even after the nerve cell has already found its final position. “We found that the centrosome – an organelle that drives cell division – regulates the nerve cell migration; for the formation and growth of the axon, however, it does not play a role,” Dr. Stanislav Vinopal and Dr. Sebastian Dupraz of the German Center for Neurodegenerative Diseases (DZNE) say. They are the first authors of the study, which now appears in the prestigious journal Neuron.

Until now, experts have debated the role of the centrosome. The process of growth and migration is enabled by a dynamic skeleton of the cell, the cytoskeleton. The cytoskeleton comprises microscopic tubules, called microtubules. They form also the backbone of the axon. The microtubules can be generated by the centrosome. With their results, the participating researchers from the group of Professor Dr. Frank Bradke have solved a central puzzle in the field of neurobiology, which science has been trying to answer for years.

The fact that the growth of the axon and the control of its migratory movement are not related is an unexpected result: “Both actions occur simultaneously and both are dependent on microtubules. And still, they are controlled independently of each other,” says Stanislav Vinopal, who, after working for the DZNE, is now conducting research at Jan Evangelista Purkyne University in Usti nad Labem, Czech Republic.

For their study, the researchers developed novel molecular tools. “These molecular tools allow us to finely control the function of the centrosome to generate microtubules” explains Sebastian Dupraz. In this way, its activity can be decreased or increased. The scientists showed in the mouse brains that the axon form independently of the centrosomal activity. However, neuronal migration is significantly influenced. “A different mechanism is apparently responsible for the growth of the axon, the so-called acentrosomal formation of microtubules,” concludes Dupraz: “This will now become the subject of our future research.”

With their work, the scientists can now align two theories that previously contradicted each other: There were proponents of the theory that the centrosome plays a significant role in neuronal development and those who disputed it. “For our study, we disentangled the two mechanisms that occur in neurons simultaneously,” says Stanislav Vinopal. “For the growth of the axon itself, we found that the centrosome is not necessary. For the process of neuronal migration, however, it plays a major role.”

The DZNE scientists’ discovery may help develop a molecular therapy for some inherited diseases, such as so-called developmental pachygyrias, that are linked to mutations of the centrosomal protein gamma-tubulin. Also in these disease phenotypes, axons are mostly intact, while neuronal migration is impaired. “Presumably, the same molecular mechanism is behind these disorders, so a future therapy might focus on this point,” the DZNE researchers say.

About the Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE (German Center for Neurodegenerative Diseases)
The DZNE is a research institute funded by the German federal and state governments, comprising ten sites across Germany. It is dedicated to diseases of the brain and nervous system, such as Alzheimer’s, Parkinson’s, and ALS, which are associated with dementia, movement disorders and other serious health impairments. To date, there are no cures for these diseases, which represent an enormous burden for countless affected individuals, their families, and the healthcare system. The aim of DZNE is to develop novel strategies for prevention, diagnosis, care, as well as treatment, and to transfer them into practice. To this end, DZNE cooperates with universities, university hospitals, research centers and other institutions in Germany and abroad. The institute is a member of the Helmholtz Association and belongs to the German Centers for Health Research. Web: https://www.dzne.de/

Originalpublikation:

Stanislav Vinopal, Sebastian Dupraz et al.: „Centrosomal microtubule nucleation regulates radial migration of projection neurons independently of polarization in the developing brain.“, Neuron (2023), DOI: 10.1016/j.neuron.2023.01.020
WEB: https://www.cell.com/neuron/fulltext/S0896-6273(23)00070-3

Weitere Informationen:

https://www.dzne.de/aktuelles/pressemitteilungen/presse/zentrosom-spielt-wichtig… Deutsche Fassung

https://www.dzne.de/en/news/press-releases/press/the-centrosome-plays-an-important-role-in-neuron-migration/

Media Contact

Sabine Hoffmann Stabsstelle Kommunikation
Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Organic matter on Mars was formed from atmospheric formaldehyde

Although Mars is currently a cold, dry planet, geological evidence suggests that liquid water existed there around 3 to 4 billion years ago. Where there is water, there is usually…

Engineers 3D print sturdy glass bricks for building structures

The interlocking bricks, which can be repurposed many times over, can withstand similar pressures as their concrete counterparts. What if construction materials could be put together and taken apart as…

New organic thermoelectric device

… that can harvest energy at room temperature. Researchers have succeeded in developing a framework for organic thermoelectric power generation from ambient temperature and without a temperature gradient. Researchers have…

Partners & Sponsors