Chemical functionalized noble metal nanocrystals for electrocatalysis

The electrocatalytic performance of noble metal nanocrystals not only depends on their morphology, component and crystal facet, but also is highly correlated with their surface and interface properties. The chemical functionalization of the electrocatalyst surface can modify the electrode/electrolyte interface structure, thereby enhancing the electrocatalytic activity. The chemical functionalization strategy is of great theoretical significance for the development of new electrocatalyst design concepts and electrocatalyst preparation methods.
Credit: Chinese Journal of Catalysis

Electrocatalysis is an interface-dominated process, in which the activity of the catalyst highly relates to the adsorption/desorption behaviors of the reactants/intermediates/products on the active sites. From the perspective of catalyst design, the chemical functionalization on noble metal surfaces will inevitably affect the reaction process, which is considered to be one of the effective strategies to tune the electrocatalytic performance of noble metal nanocrystals.

Recently, a research team led by Prof. Yu Chen from Shaanxi Normal University, China published the latest Account paper in the field of noble metal electrocatalysis. Their Account paper summarizes the synthesis methods of polyamine (PAM) functionalized noble metal nano-electrocatalysts and their applications in electrocatalytic reactions, and presents the research progress, current deficiencies, challenges and future prospects of chemically functionalized noble metal electrocatalysts, which were published in Chinese Journal of Catalysis (https://doi.org/10.1016/S1872-2067(22)64186-X).

The formation mechanism of PAM molecule functionalized noble metal nanocrystals first is discussed. The authors explain that PAM has a large number of amino groups (−NH2) and/or imino groups (−NH−), in which the lone pair of electrons on the nitrogen atom has a strong coordination ability. In the hydrothermal reaction, PAM can well interact with PtII, RhIII, PdII and AgI to form complexes, which transforms the growth process of noble metal nanocrystals from thermodynamic control to kinetics control. Under kinetic control, the final shape of noble metal nanocrystals no longer tends to form nanospheres with minimal surface free energy, and various anisotropic nanostructures will be obtained based on the reaction conditions, such as nanocubes, nanowires, nanosheets and nanonetworks.

The PAM functionalized electrocatalysts are applied in some important electrochemical reactions such as hydrogen precipitation reaction (HER) and oxygen reduction reaction (ORR), which generally reveal enhanced electroactivity. Typically, a large amount of −NH2 and −NH− in PAM will be protonated to form −NH3+ and −NH2+ in acidic or neutral media, which will directly lead to the increase of the surface proton concentration of PAM-functionalized noble metal nanocrystals. For the proton-coupled electrocatalytic reactions, such as HER and ORR, PAM-functionalized noble metal nanocrystals exhibit lower reaction overpotentials and higher catalytic efficiency due to the interfacial proton enrichment. In addition, the effects of PAM functionalization (such as electronic effect, steric hindrance effect, group effect) on catalyst activity and selectivity are highlighted.

Finally, shortcomings, challenges and perspectives in this promising emerging research field are briefly summarized. This work aims to stimulate deeper attention to surfaces/interfaces functionalization and catalysis, increase investment in surfaces/interfaces functionalization research, and will undoubtedly change our future renewable energy production and environmental technologies related to electrocatalysis.

About the Journal

Chinese Journal of Catalysis is co-sponsored by Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Chinese Chemical Society, and it is currently published by Elsevier group. This monthly journal publishes in English timely contributions of original and rigorously reviewed manuscripts covering all areas of catalysis. The journal publishes Reviews, Accounts, Communications, Articles, Highlights, Perspectives, and Viewpoints of highly scientific values that help understanding and defining of new concepts in both fundamental issues and practical applications of catalysis. Chinese Journal of Catalysis ranks among the top two journals in Applied Chemistry with a current SCI impact factor of 12.92. The Editors-in-Chief are Profs. Can Li and Tao Zhang.

At Elsevier http://www.journals.elsevier.com/chinese-journal-of-catalysis

Manuscript submission https://mc03.manuscriptcentral.com/cjcatal

Media Contact

Fan He
Dalian Institute of Chemical Physics, Chinese Academy Sciences
hef197@dicp.ac.cn
Office: 86-411-843-79240

www.dicp.ac.cn

Media Contact

Fan He
Dalian Institute of Chemical Physics, Chinese Academy Sciences

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Organic matter on Mars was formed from atmospheric formaldehyde

Although Mars is currently a cold, dry planet, geological evidence suggests that liquid water existed there around 3 to 4 billion years ago. Where there is water, there is usually…

Engineers 3D print sturdy glass bricks for building structures

The interlocking bricks, which can be repurposed many times over, can withstand similar pressures as their concrete counterparts. What if construction materials could be put together and taken apart as…

New organic thermoelectric device

… that can harvest energy at room temperature. Researchers have succeeded in developing a framework for organic thermoelectric power generation from ambient temperature and without a temperature gradient. Researchers have…

Partners & Sponsors