Clear sign that QGP production ‘turns off’ at low energy

Scientists used the STAR detector at the Relativistic Heavy Ion Collider (RHIC) to systematically search through data from collisions at different energies, looking for signs that the production of quark-gluon plasma turns off. That sign shows up as a sign change in data on net proton production at the lowest collision energy.
Credit: Brookhaven National Laboratory

Higher order statistical analysis of protons emitted from wide range of gold-gold collision energies shows clear absence of a quark-gluon plasma (QGP) at the lowest energy.

Physicists report new evidence that production of an exotic state of matter in collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC)—an atom-smasher at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory—can be “turned off” by lowering the collision energy. The “off” signal shows up as a sign change—from negative to positive—in data that describe “higher order” characteristics of the distribution of protons produced in these collisions.

The findings, just published by RHIC’s STAR Collaboration in Physical Review Letters, will help physicists map out the conditions of temperature and density under which the exotic matter, known as a quark-gluon plasma (QGP), can exist and identify key features of the phases of nuclear matter.

“Freeing” quarks and gluons

By varying the collision energies at RHIC, scientists can alter the temperate and baryon density (related to pressure) of the matter produced in the collisions. They are using the data to search for signs of transitions between different phases of nuclear matter, including quark-gluon plasma and the hadrons that make up ordinary atomic nuclei.
Credit: Brookhaven National Laboratory

Generating and studying QGP has been a central goal of research at RHIC. Since the collider began operating in 2000, a wide range of measurements have shown that the most energetic smashups of atomic nuclei—at 200 billion electron volts (GeV)—“melt” the boundaries of protons and neutrons to set free, for a fleeting instant, the quarks and gluons that make up ordinary nuclear particles. Various measurements have shown that the QGP exists down to 19.6 GeV. The new analysis used data collected by RHIC’s STAR detector during the first phase of the RHIC Beam Energy Scan to systematically search for the energy at which production of this thermalized state of quarks and gluons is turned off.

“We analyzed 10 collision energies—from a center of mass energy of 200 GeV, which is RHIC’s highest collision energy between two gold beams, down to 3 GeV, where one gold beam collides with a stationary gold target,” said Ashish Pandav, a student at India’s National Institute of Science Education and Research (NISER), now stationed at DOE’s Lawrence Berkeley National Laboratory (LBNL). “These data give us the widest coverage to date of the nuclear phase diagram—the map of how nuclear matter changes with temperature and density.”

To determine whether a QGP was created at each collision energy the scientists looked at the distribution of protons produced in each collision event.

Systematic analysis

“We measured, event by event, the number of protons minus the number of antiprotons produced, and the distribution of that net-proton production,” said Bedangadas Mohanty, a physics professor at NISER. Mohanty and the STAR team analyzed data on a variety of characteristics of the distribution, including the mean value, the variance, how skewed the data were, and so on, up to what are known as 5th and 6th order characteristics. Then they compared their observations with predictions calculated using the equations of quantum chromodynamics (QCD), the theory that describes the interactions of quarks and gluons, simulated on a discrete spacetime lattice.

“These numerical simulations of QCD have the formation of a thermalized quark-gluon plasma built in, so if the data match the predictions, it is evidence that QGP is present,” Mohanty said.

Hierarchical ordering

The QCD calculations predict a hierarchical ordering of the net-proton distribution characteristics—and that certain relationships among these characteristics should all have negative values. The STAR data indicate that these thermodynamic patterns generally persist at all but the lowest collision energy.

“We know at 200 GeV that RHIC collisions create a QGP, but what about the next energy, 62.4 GeV, 54.4 GeV, 39, 27, 19.6?” said Nu Xu, a physicist at LBNL and former spokesperson for STAR. “At all of these energies, we found the predicted hierarchy and negative values—meaning the data at these energies are all consistent with a thermalized QGP.”

Below 19.6 GeV, the data continued to match the predictions, though the error bars indicating the range of uncertainty about those measurements were large.

“For these energies, we need more data,” Xu said.

But at the lowest energy, 3 GeV, the scientists saw a dramatic shift. The order of the hierarchy among the analyzed characteristics flipped—and so did the sign of the key relationships, from negative to positive.

“This sign change is a robust indication, supported by first-principles calculations, that the formation of a quark-gluon plasma is turned off at RHIC’s lowest collision energy,” Xu said.

Certainty in the math

The scientists’ certainty is driven by the fact that the comparisons they used come from pure mathematical descriptions of the QGP, rather than models based on approximations of the quark-gluon interactions. They liken this “first-principles” approach to solving the simplest equations of classical physics—like Newton’s law (force = mass x acceleration) or understanding the impact of velocity on how far you can travel (rate x time = distance).

“In this case, it is solving the interactions of quarks and gluons, using QCD, which has much more complicated equations,” Mohanty said.

That work required powerful computers, including at the RHIC and ATLAS Computing Facility (RACF) at Brookhaven Lab, the National Energy Research Scientific Computing Center (NERSC) at LBNL, and the Open Science Grid consortium.

“These computing resources and lattice QCD—an approach for solving the equations that considers quark-gluon interactions on 4D space-time lattice—have enabled great advances in our ability to make precise predictions about the behavior of higher order characteristics of conserved charge distributions in QCD,” said Frithjof Karsch, a former Brookhaven Lab theorist now at the University of Bielefeld in Germany, who co-authored a paper on the QCD predictions. “It is exciting to see these predictions from the first-principles calculations being confirmed by the experimental data at RHIC.”

The scientists hope to further strengthen their confidence in their findings and their search for a QGP turn-off point by analyzing data from RHIC’s Beam Energy Scan II (BES II). That trove of data will narrow the uncertainty of all the results, especially for the energies below 19.6 GeV.

“From a thermalized system, we see a smooth pattern from 200 GeV to 62 GeV all the way to 19.6. Then we see something ‘bumpy’ between 20 and 3 GeV,” Xu said.

An earlier analysis of fluctuations in net proton production suggested that bumpiness could be an indication of a particular combination of temperature and pressure where the way the QGP is formed from ordinary nuclear matter changes. These results and the addition of data from BES II will help to narrow the search for that so-called critical point.

“It is all related,” Xu said.

This study was supported by the DOE Office of Science, the U.S. National Science Foundation, and a wide range of international funding agencies listed in the paper. RHIC operations are funded by the DOE Office of Science. RHIC and NERSC are DOE Office of Science user facilities.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

Related Links

Journal: Physical Review Letters
DOI: 10.1103/PhysRevLett.130.082301
Article Title: Beam Energy Dependence of Fifth- and Sixth-Order Net-Proton Number Fluctuations in Au + Au Collisions at RHIC
Article Publication Date: 24-Feb-2023

Media Contact

Karen McNulty Walsh
DOE/Brookhaven National Laboratory
kmcnulty@bnl.gov
Office: 631-344-8350

Media Contact

Karen McNulty Walsh
DOE/Brookhaven National Laboratory

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…