Compact laser scanner with 90 percent less construction volume
Galvanometer scanners have been in use in laser material processing for decades. However, a team from the Fraunhofer Institute for Laser Technology ILT has now developed a new, particularly compact scanner module for applications in 3D printing, micromachining or medical technology. The researchers have already successfully tested it for various applications. The scanner will be on display at LASER World of Photonics 2023 in Munich.
Smaller, lighter, more efficient and more sustainable – these are the demands placed on system developers today. A team at Fraunhofer ILT has successfully met these requirements by fusing the scanner drive and mirror substrate, resulting in significantly smaller dimensions: The planar galvanometer scanner saves up to 90 percent installation space compared to conventional systems. The particularly compact design of only 50 cm³ opens up new possibilities in a wide range of applications.
Commercially available galvanometer scanners with an aperture of 10 mm require 10 to 50 times the installation space of the planar galvanometer scanner. As this space is reduced, so is the weight of the scanner unit, an advantage that opens up a host of new applications and opportunities to increase productivity.
Thanks to the considerable reduction in space and weight, the new scanner can be integrated into applicators for hand-guided laser processes – such as medical technology applications, laser drilling or marking processes – without sacrificing precision or dynamics.
Integration in industrial multi-beam systems
In industrial use, the mini scanner is also suitable for all hand-held laser marking and engraving systems. In addition, its compact design enables multiple scanners to be integrated into a single processing head. For this purpose, the Fraunhofer researchers have built and characterized a demonstrator with four 2D deflection units and one F-theta lens each. The scanner array has a construction volume of 140 x 140 x 90 mm³.
The researchers have successfully tested the system with laser powers of up to 150 W per scan head for laser marking and engraving applications – with comparable accuracy and dynamics to conventional galvanometer scanners. Other potential applications include 3D printing, micromachining, paint stripping and decoating. With four or more scanners, processing tasks can be parallelized; productivity increases linearly with the number of scanners.
The mini scanner uses commercially available, model-based control electronics. This allows customers to integrate it into existing machines using standardized communication protocols. This closed-loop control is more robust, precise and faster than conventional PID controllers, especially due to scanning without tracking delay. The Fraunhofer laser specialists can develop the respective systems tailored to customers’ needs.
Fraunhofer ILT at LASER World of PHOTONICS
A prototype of the mini scanner will be on display at the Fraunhofer booth A3.441 at LASER World of Photonics in Munich from June 27 to 30. Visitors will also find further exhibits at booth A1.521 at the World of Quantum, which is taking place in parallel.
Wissenschaftliche Ansprechpartner:
Lazar Bochvarov M. Sc.
Group Laser Medical Technology and Bioanalytics
Telephone +49 241 8906-431
lazar.bochvarov@ilt.fraunhofer.de
Dr. Achim Lenenbach
Head of the department Laser Medical Technology and Biophotonics
Telephone +49 241 8906-124
achim.lenenbach@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
www.ilt.fraunhofer.de
Weitere Informationen:
https://www.ilt.fraunhofer.de/en.html
https://www.ilt.fraunhofer.de/en/fairs-and-events/fairs/2023/laser-2023.html
Media Contact
All latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
A ‘language’ for ML models to predict nanopore properties
A large number of 2D materials like graphene can have nanopores – small holes formed by missing atoms through which foreign substances can pass. The properties of these nanopores dictate many…
Clinically validated, wearable ultrasound patch
… for continuous blood pressure monitoring. A team of researchers at the University of California San Diego has developed a new and improved wearable ultrasound patch for continuous and noninvasive…
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….