First observation of rubber-like elasticity in liquid glycerol

The image shows a laser-generated surface bubble of liquid glycerol that has been in motion for two and a half microseconds and has expanded by about 600 micrometers. Kayanattil et al. observed an unexpected elastic behavior during its dynamic process.
Credit: Kayanattil, Huang

Simple molecular liquids such as water or glycerol are of great importance for technical applications, in biology or even for understanding properties in the liquid state. Researchers at the MPSD have now succeeded in observing liquid glycerol in a completely unexpected rubbery state. Writing in PNAS, they report how they created rapidly expanding bubbles on the surface of the liquid in vacuum using a pulsed laser. However, the thin, micrometers-thick liquid envelope of the bubble did not behave like a viscous liquid dissipating deformation energy as expected, but like the elastic envelope of a rubber toy balloon, which can store and release elastic energy.

It is the first time an elasticity dominating the flow behavior in a Newtonian liquid like glycerol has been observed. Its existence is difficult to reconcile with common ideas about the interactions in liquid glycerol and motivates the search for more comprehensive descriptions. Surprisingly, the elasticity persists over such long timescales of several microseconds that it could be important for very rapid engineering applications such as micrometer-confined flows under high pressure. Yet, the question remains unsettled whether this behavior is a specific property of liquid glycerol, or rather a phenomenon that occurs in many molecular liquids under similar conditions but has not been observed so far.

The team proposes that the high straining rate and the confined thickness of the shell causes the individual molecules to form groups that are displaced in a correlated and collective manner. This change would stabilize the elastic state over a longer time than would be possible in glycerol’s equilibrium state, where the single molecules are subject to fast diffusion. “We want to reach a better understanding of this unusual state,” says lead author and doctoral student Meghanad Kayanattil, “because it could tell us a lot about collective excitations in disordered systems.”

The existence of such a rubber-like state in liquid glycerol raises the question: Are similar effects possible in other liquid substances? In particular the creation of elastic bubbles in water would be a major achievement because it is the most important and well-studied liquid with implications for multiple scientific fields. However, the glycerol bubbles only formed in a vacuum environment, as shown by the MPSD team. This poses some challenges for similar experiments involving water, because it begins to boil below the vapor pressure of 32 mbar – well above the pressure at which the experiments need to take place.

The research was carried out by members of the Institute’s Scientific Support Unit Ultrafast Beams and guest scientist Zhipeng Huang from the University of Duisburg-Essen. An innovative scientific approach and the right choice of parameters led to the discovery of this novel elastic behavior. “Our experiment invites us to rethink the correlations and the differences between liquids and solids,” says principal investigator Sascha Epp. “As a next step, we aim to investigate the molecular interaction and structure of the transient bubble shell and whether this effect can also be created in a range of other liquids whose molecular interactions are different from glycerol.”

Wissenschaftliche Ansprechpartner:

Meghanad Kayanattil, meghanad.kayanattil@mpsd.mpg.de
Dr. Sacha Epp, sascha.epp@mpsd.mpg.de

Originalpublikation:

Rubber-like elasticity in laser-driven free surface flow of a Newtonian fluid
Meghanad Kayanattil, Zhipeng Huang, Djordje Gitaric, and Sascha W. Epp
June 26, 2023
PNAS,120 (27) e2301956120
https://doi.org/10.1073/pnas.2301956120

http://www.mpsd.mpg.de

Media Contact

Dr. Joerg Harms Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Struktur und Dynamik der Materie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…