Healing power of light

An injectable biomaterial activated by pulses of low-energy blue light has tremendous potential for on-the-spot repair to the domed outer layer of the eye, a team of University of Ottawa researchers and their collaborators have revealed.
Credit: Faculty of Medicine, University of Ottawa

University of Ottawa team advances clear vision for eye repair.

With potential to impact millions, study finds that biomimetic materials pulsed with low-energy blue light can reshape damaged corneas, including thickening the tissue.

An injectable biomaterial activated by pulses of low-energy blue light has tremendous potential for on-the-spot repair to the domed outer layer of the eye, a team of University of Ottawa researchers and their collaborators have revealed.

Guided by biomimetic design—innovation inspired by nature—the multidisciplinary researchers’ compelling results show that a novel light-activated material can be used to effectively reshape and thicken damaged corneal tissue, promoting healing and recovery.

This technology is a potential game-changer in corneal repair; tens of millions of people across the globe suffer from corneal diseases and only a small fraction are eligible for corneal transplantation. Transplant operations are the current gold standard for ailments resulting in thinning corneas such as keratoconus, a poorly understood eye disease that results in loss of vision for many people.

“Our technology is a leap in the field of corneal repair. We are confident this could become a practical solution to treat patients living with diseases that negatively impact corneal shape and geometry, including keratoconus,” says Dr. Emilio Alarcon, an Associate Professor at the uOttawa Faculty of Medicine and researcher at the BioEngineering and Therapeutic Solutions (BEaTS) group at the University of Ottawa Heart Institute.

The cornea is the protective, dome-like surface of the eye in front of the iris and pupil. It controls and directs light rays into the eye and helps achieve clear vision. It’s normally transparent. But injury or infection results in scarring of the cornea.

The collaborative team’s work was published in Advanced Functional Materials, a high-impact scientific journal.

The biomaterials devised and tested by the team are comprised of short peptides and naturally occurring polymers called glycosaminoglycans. In the form of a viscous liquid, the material gets injected within corneal tissue after a tiny pocket is surgically created. When pulsed with low-energy blue light, the injected peptide-based hydrogel hardens and forms into a tissue-like 3D-structure within minutes. Dr. Alarcon says this then becomes a transparent material with similar properties to those measured in pig corneas.

In vivo experiments using a rat model indicated that the light-activated hydrogel could thicken corneas without side effects. The research team – which employed a much smaller blue light dosage compared to what’s been used in other studies – also successfully tested the technology in an ex vivo pig cornea model. Testing in large animal models will be necessary prior to clinical human trials.

“Our material was engineered to harvest the blue light energy to trigger the on-the-spot assembling of the material into a cornea-like structure. Our cumulative data indicates that the materials are non-toxic and remain for several weeks in an animal model. We anticipate our material will remain stable and be non-toxic in human corneas,” says Dr. Alarcon, whose uOttawa lab focuses on developing new materials with regenerative capabilities for tissue of the heart, skin, and cornea.

The rigorous research took over seven years to reach the publication stage.

“We had to engineer each part of the components involved in the technology, from the light source to the molecules used in the study. The technology was developed to be clinically translatable, meaning all components must be designed to be ultimately manufacturable following strict standards for sterility,” Dr. Alarcon says.

The research findings are also the focus of a patent application, which is presently under negotiations for licensing.

Dr. Alarcon was the study’s senior author who guided the material design aspect of the research, while uOttawa’s Dr. Marcelo Muñoz and Aidan MacAdam played big roles in creating the novel technology. Interdisciplinary collaborators included Université de Montréal scientists Dr. May Griffith, an expert in cornea regeneration, and Dr. Isabelle Brunette, an ophthalmology and corneal transplant expert.

The project was supported by a Collaborative Health Research Projects grant, an NSERC Discovery grant, the Government of Ontario, and the University of Ottawa Heart Institute.

Journal: Advanced Functional Materials
DOI: 10.1002/adfm.202302721
Method of Research: Randomized controlled/clinical trial
Subject of Research: Animals
Article Title: Low Energy Blue Pulsed Light-Activated Injectable Materials for Restoring Thinning Corneas
Article Publication Date: 19-Jul-2023

Media Contact

Paul Logothetis
University of Ottawa
plogothe@uottawa.ca
Cell: 6138637221

Media Contact

Paul Logothetis
University of Ottawa

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Organic matter on Mars was formed from atmospheric formaldehyde

Although Mars is currently a cold, dry planet, geological evidence suggests that liquid water existed there around 3 to 4 billion years ago. Where there is water, there is usually…

Engineers 3D print sturdy glass bricks for building structures

The interlocking bricks, which can be repurposed many times over, can withstand similar pressures as their concrete counterparts. What if construction materials could be put together and taken apart as…

New organic thermoelectric device

… that can harvest energy at room temperature. Researchers have succeeded in developing a framework for organic thermoelectric power generation from ambient temperature and without a temperature gradient. Researchers have…

Partners & Sponsors