Frosty hydrogen as target

Shadowgraphs (blue) at the time of impact of the high-intensity laser pulse on the jet of hydrogen. A weaker light pulse sent in advance deliberately changed the hydrogen jet into three different initial states.
Credit: HZDR

New method improves proton acceleration with high power laser.

Bringing protons up to speed with strong laser pulses – this still young concept promises many advantages over conventional accelerators. For instance, it seems possible to build much more compact facilities. Prototypes to date, however, in which laser pulses are fired at ultra-thin metal foils, show weaknesses – especially in the frequency with which they can accelerate protons. At the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), an international working group has tested a new technique: In this approach, frozen hydrogen acts as a “target” for the laser pulses. In the future, the method could serve as a basis for advanced tumor therapy concepts, as the team describes in the journal Nature Communications (DOI: 10.1038/s41467-023-39739-0).

Conventional proton accelerators such as the Large Hadron Collider at CERN in Geneva are based on the particle acceleration via strong radio frequency waves. In laser acceleration, on the other hand, ultra-bright light pulses give the particles a boost: Extremely short and powerful laser pulses are fired at wafer-thin metal foils. The light heats the material to such an extent that electrons are ejected in large numbers, while the heavy atomic nuclei remain in place. Since the electrons are negatively charged and the atomic nuclei are positively charged, a strong electric field forms between them.

This field can then launch a pulse of protons with enormous force over a distance of only a few micrometers, thus bringing them to energies for which much longer systems would be needed with conventional accelerator technology. Another advantage: “With laser acceleration, we can pack a huge number of particles into one proton bunch,” explains HZDR physicist Dr. Karl Zeil. “This could be interesting for radiation therapy of tumors.”

However, the previous method of firing laser pulses at metal foils has drawbacks. Firstly, it is difficult to generate several proton pulses per second – the foil is already destroyed by a single laser shot and therefore has to be replaced again and again. Secondly, the acceleration process is quite complex and relatively difficult to control. The reason: The protons to be accelerated come from hydrocarbons that have accumulated on the metal foils as a layer of contaminants – not exactly ideal for perfect control of the experiment.

Filament instead of foil

Therefore, the German-American research team around Karl Zeil came up with an alternative: “Instead of a metal foil, we use a fine, strongly cooled hydrogen jet,” the researcher describes. “This jet serves as a target for our high-intensity laser pulses.” Specifically, the experts cool hydrogen gas in a copper block to such an extent that it becomes liquid. The liquid hydrogen then flows through a nozzle into a vacuum chamber. It thus cools further and solidifies into a micrometer-thin filament: the target for the laser pulses. And since the hydrogen filament renews itself, the laser has a new, intact target in its sight for every shot.

Another benefit is that the setup allows for a more favorable acceleration mechanism: Instead of just heating the material, the laser pulses use radiation pressure to push the electrons out of the hydrogen and create the extreme electric fields needed to accelerate the protons. The team was able to optimize the process by sending a short, weaker light pulse in front of the main laser pulse. This preheated the frozen hydrogen filament, causing it to expand and its cross-section to grow from five micrometers to several times that size. This made it possible to increase the acceleration distance and optimize the process.

Prospects for tumor therapy

The result: “We were able to bring protons up to an energy of 80 MeV,” reports Karl Zeil. “This is close to the previous record for laser proton acceleration. But unlike previous facilities, our technique has the potential to generate multiple proton bunches per second.” Furthermore, the acceleration process is comparatively easy to simulate for hydrogen targets using high-performance computing – a task that also involved the Center for Advanced Systems Understanding (CASUS) at HZDR. “This allows us to better understand and optimize the interaction between laser and matter,” Zeil said. Now the experts want to use AI algorithms to increase the “hit rate” between the laser pulses and the frozen hydrogen jet.

The technology could be interesting for a future type of radiation therapy. Already today, some tumors are successfully irradiated with protons. Laser acceleration could increase the dose and thus shorten the irradiation time. And – as an HZDR study suggests – this could better protect the healthy tissue surrounding the tumor.

Publication:
M. Rehwald, S. Assenbaum, C. Bernert, F. Brack, M. Bussmann, T. Cowan, C. Curry, F. Fiuza, M. Garten, L. Gaus, M. Gauthier, S. Göde, I. Göthel, S. Glenzer, L. Huang, A. Huebl, J. Kim, T. Kluge, S. Kraft, F. Kroll, J. Metzkes-Ng, T. Miethlinger, M. Loeser, L. Obst-Huebl, M. Reimold, H. Schlenvoigt, C. Schoenwaelder, U. Schramm, M. Siebold, F. Treffert, L. Yang, T. Ziegler & K. Zeil: Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density, in Nature Communications, 2023 (DOI: 10.1038/s41467-023-39739-0)

Further information:
Dr. Karl Zeil
Institute of Radiation Physics at HZDR
Phone: +49 351 260 2614 | Email: k.zeil@hzdr.de

Media contact:
Simon Schmitt | Head
Communication and Media Relations at HZDR
Phone: +49 351 260 3400 | Email: s.schmitt@hzdr.de

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) performs – as an independent German research center – research in the fields of energy, health, and matter. We focus on answering the following questions:
•    How can energy and resources be utilized in an efficient, safe, and sustainable way?
•    How can malignant tumors be more precisely visualized, characterized, and more effectively treated?
•    How do matter and materials behave under the influence of strong fields and in smallest dimensions?
To help answer these research questions, HZDR operates large-scale facilities, which are also used by visiting researchers: the Ion Beam Center, the Dresden High Magnetic Field Laboratory and the ELBE Center for High-Power Radiation Sources.
HZDR is a member of the Helmholtz Association and has six sites (Dresden, Freiberg, Görlitz, Grenoble, Leipzig, Schenefeld near Hamburg) with almost 1,500 members of staff, of whom about 670 are scientists, including 220 Ph.D. candidates.

Journal: Nature Communications
DOI: 10.1038/s41467-023-39739-0
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density
Article Publication Date: 7-Jul-2023

Media Contact

Simon Schmitt
Helmholtz-Zentrum Dresden-Rossendorf
s.schmitt@hzdr.de
Office: +49 351 260 3400

Expert Contact

Dr. Karl Zeil
Helmholtz-Zentrum Dresden-Rossendorf
k.zeil@hzdr.de
Office: +49 351 260 2614

Media Contact

Simon Schmitt
Helmholtz-Zentrum Dresden-Rossendorf

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…