Research out this week helps us understand basics of how neurons communicate
Nerve cells with a mutant calcium channel dont communicate as effectively as those with a normal calcium channel, according Saint Louis University research that is published in the Proceedings of the National Academy of Sciences Online Early Edition the week of Oct. 4.
“The research helps us understand the basic mechanism that underlies how neurons communicate,” said Amy Harkins, Ph.D., assistant professor of pharmacological and physiological science at Saint Louis University School of Medicine and principal investigator.
“The entry of calcium into cells is a very important process that allows muscles to contract, the heart to beat and nerve cells to communicate with one another. The research is teaching us how a very integral part of our cellular structure works.”
Communication between nerve cells occurs when calcium enters a nerve cell and causes the cell to release a chemical called a neurotransmitter that then carries a signal to other nerve cells. Calcium cannot freely enter cells, and must wait for an opening of a molecular gate, which is called a calcium channel.
“In this study we removed a specific part of the calcium channel molecule called the synaptic protein interaction site and put this mutant calcium channel back into cells,” Dr. Harkins said. “We found that cells with the mutant calcium channel no longer released neurotransmitter as efficiently as cells with the normal calcium channel.”
The research, done in collaboration with investigators at The University of Chicago and Tufts University, is important in helping us understand more about the important process of communication between nerve cells, Dr. Harkins said.
“It gives us a basic understanding of how something works. In some ways, the body is similar to a broken car. When something goes wrong, you cant fix it if you dont know how it works.”
Saint Louis University findings are published in PNAS online edition
Media Contact
More Information:
http://www.slu.eduAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Humans vs Machines—Who’s Better at Recognizing Speech?
Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…
Not Lost in Translation: AI Increases Sign Language Recognition Accuracy
Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…
Breaking the Ice: Glacier Melting Alters Arctic Fjord Ecosystems
The regions of the Arctic are particularly vulnerable to climate change. However, there is a lack of comprehensive scientific information about the environmental changes there. Researchers from the Helmholtz Center…