Development of advanced quantum networks
This research carried out at the State University of Campinas focused on the use of nanometric optomechanical cavities as bridges between superconducting circuits and optical fibers, with applications in computing and quantum communications.
The ability to transmit information coherently in the band of the electromagnetic spectrum from microwave to infrared is vitally important to the development of the advanced quantum networks used in computing and communications.
A study conducted by researchers at the State University of Campinas (UNICAMP) in Brazil, in collaboration with colleagues at ETH Zurich in Switzerland and TU Delft in the Netherlands, focused on the use of nanometric optomechanical cavities for this purpose. These nanoscale resonators promote interaction between high-frequency mechanical vibrations and infrared light at wavelengths used by the telecommunications industry.
An article on the study is published in the journal Nature Communications.
“Nanomechanical resonators act as bridges between superconducting circuits and optical fibers. Superconducting circuits are currently among the most promising technologies for quantum computing, while optical fibers are routinely used as long-distance transmitters of information with little noise and no signal loss,” said Thiago Alegre, a professor at the Gleb Wataghin Institute of Physics (IFGW-UNICAMP) and last author of the article.
According to Alegre, one of the key innovations in the study was the introduction of dissipative optomechanics. Traditional optomechanical devices rely on purely dispersive interaction, where only photons confined in the cavity are efficiently dispersed. In dissipative optomechanics, photons can be scattered directly from waveguide to resonator. “Optoacoustic interaction can be controlled more tightly as a result,” he said.
Prior to this study, dissipative optomechanical interaction had been demonstrated only at low mechanical frequencies, precluding important applications such as quantum state transfer between the photonic (optical) and phononic (mechanical) domains. The study demonstrated the first dissipative optomechanical system operating in a regime where the mechanical frequency exceeded the optical linewidth. “We succeeded in raising mechanical frequency by two orders of magnitude and achieved a tenfold rise in the optomechanical coupling rate. This offers highly promising prospects for the development of even more effective devices,” Alegre said.
Quantum networks
Fabricated in collaboration with TU Delft, the devices were designed to use technologies that are well-established in the semiconductor industry. Nanometric silicon beams were suspended and free to vibrate, so that infrared light and mechanical vibrations were confined simultaneously. A laterally placed waveguide positioned to permit the coupling of the optical fiber to the cavity gave rise to dissipative coupling, the key ingredient of the results presented by the researchers.
The study offers novel possibilities for the construction of quantum networks. In addition to this immediate application, it lays a basis for future fundamental research. “We expect to be able to manipulate mechanical modes individually and mitigate optical non-linearities in optomechanical devices,” Alegre said.
The other co-authors are André Garcia Primo, Pedro Vinícius Pinho and Gustavo Silva Wiederhecker, all of whom are also affiliated with UNICAMP; Rodrigo da Silva Benevides at ETH Zürich; and Simon Gröblacher at TU Delft. The study received funding from FAPESP via seven projects (19/09738-9, 20/15786-3, 19/01402-1, 18/15577-5, 18/15580-6, 18/25339-4 and 22/07719-0).
About São Paulo Research Foundation (FAPESP)
The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at www.fapesp.br/en and visit FAPESP news agency at www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.
Journal: Nature Communications
DOI: 10.1038/s41467-023-41127-7
Article Title: Dissipative optomechanics in high-frequency nanomechanical resonators
Article Publication Date: 18-Sep-2023
Media Contact
Heloisa Reinert
Fundação de Amparo à Pesquisa do Estado de São Paulo
hreinert@fapesp.br
Cell: 55-11966392552
Original Source
All latest news from the category: Information Technology
Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.
This area covers topics such as IT services, IT architectures, IT management and telecommunications.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…