Towards the quantum of sound

Artist’s impression of cooled acoustic waves in an optical fiber taper.
Credit: @ Long Huy Da

The quantum ground state of an acoustic wave of a certain frequency can be reached by completely cooling the system. In this way, the number of quantum particles, the so-called acoustic phonons, which cause disturbance to quantum measurements, can be reduced to almost zero and the gap between classical and quantum mechanics bridged.

Over the past decade, major technological advances have been made, making it possible to put a wide variety of systems into this state. Mechanical vibrations oscillating between two mirrors in a resonator can be cooled to very low temperatures as far as the quantum ground state. This has not yet been possible for optical fibers in which high-frequency sound waves can propagate. Now researchers from the Stiller Research Group have taken a step closer to this goal.

In their study, recently published in Physical Review Letters, they report that they were able to lower the temperature of a sound wave in an optical fiber initially at room temperature by 219 K using laser cooling, ten times further than had previously been reported. Ultimately, the initial phonon number was reduced by 75%, at a temperature of 74 K, -194 Celsius. Such a drastic reduction in temperature was made possible by the use of laser light. Cooling of the propagating sound waves was achieved via the nonlinear optical effect of stimulated Brillouin scattering, in which light waves are efficiently coupled to sound waves. Through this effect, the laser light cools the acoustic vibrations and creates an environment with less thermal noise which is, to an extent, “disturbing” noise for a quantum communication system, for example. “An interesting advantage of glass fibers, in addition to this strong interaction, is the fact that they can conduct light and sound excellently over long distances,” says Laura Blázquez Martínez, one of the lead authors of the article and a doctoral student in the Stiller research group.

Most physical platforms previously brought to the quantum ground state were microscopic. However, in this experiment, the length of the optical fiber was 50 cm and a sound wave extending over the full 50 cm of the core of the fiber was cooled to extremely low temperatures. “These results are a very exciting step towards the quantum ground state in waveguides and the manipulation of such long acoustic phonons opens up possibilities for broadband applications in quantum technology,” according to Dr. Birgit Stiller, head of the quantum optoacoustics group.

Sound, in the day-to-day classical world, can be understood as a density wave in a medium. However, from the perspective of quantum mechanics, sound can also be described as a particle: the phonon. This particle, the sound quantum, represents the smallest amount of energy which occurs as an acoustic wave at a certain frequency. In order to see and study single quanta of sound, the number of phonons must be minimized. The transition from the classical to quantum behavior of sound is often more easily observed in the quantum ground state, where the number of phonons is close to zero on average, such that the vibrations are almost frozen and quantum effects can be measured. Stiller: “This opens the door to a new landscape of experiments that allow us to gain deeper insights into the fundamental nature of matter.” The advantage of using a waveguide system is that light and sound are not bound between two mirrors, but propagating along the waveguide. The acoustic waves exist as a continuum – not only for certain frequencies – and can have a broad bandwidth, making them promising for applications such as high-speed communication systems.

“We are very enthusiastic about the new insights that pushing these fibers into the quantum ground state will bring”, emphasizes the research group leader. “Not only from the fundamental research point of view, allowing us to peek into the quantum nature of extended objects, but also because of the applications this could have in quantum communications schemes and future quantum technologies”.

Journal: Physical Review Letters
DOI: 10.1103/PhysRevLett.132.023603
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Optoacoustic Cooling of Traveling Hypersound Waves
Article Publication Date: 11-Jan-2024

Media Contact

Florian Ritter
Max Planck Institute for the Science of Light
florian.ritter@mpl.mpg.de
Office: 91317133807

Media Contact

Florian Ritter
Max Planck Institute for the Science of Light

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Unique straining affects phase transformations in silicon

… a material vital for electronics. When Valery Levitas left Europe in 1999, he packed up a rotational diamond anvil cell and brought it to the United States. He and…

World’s first individual gene mutation test

… for predicting risk of sudden cardiac death. Scientists at the Victor Chang Cardiac Research Institute have developed a world-first individualised risk prediction tool for people suffering from a type…

Study highlights complex ocean conditions facing world’s most powerful tidal turbine

The number of tidal power and other offshore renewable energy installations is set to grow significantly around the UK coastline over the coming decades. However, launching state-of-the-art devices into often…

Partners & Sponsors