Sustainable materials: unveiling the fracture mechanism in soft matter

Fracture Image
Credit: Politecnico di Milano

A new theory has finally deciphered the physical mechanisms of fracture in soft materials. This revolutionary discovery will soon lead to new, defect-free materials that are more resistant and durable, thus “environmentally friendly”! The article Elastic Instability Behind Brittle Fracture was recently published by Physical Review Letters.

“We have revealed that fracture propagates from the free surface of the material, starting from an elastic instability that breaks the symmetry of the object. Then, the rupture drastically extends with an intricate network of cracks spreading like a turbulence phenomenon similar to what we observe in fluids, like during vortex formation,” explains Pasquale Ciarletta from the MOX Laboratory, Department of Mathematics at Politecnico di Milano.

This discovery stimulates significant applications in various technological sectors. For instance, in the production of micro and nano devices, where materials need to be extremely resistant and defect-free. Understanding how cracks form can lead to designing more robust and durable materials. In the consumer electronics field, this could lead to the creation of devices such as smartphones, tablets, and laptops with screens that better withstand shocks and drops, thus reducing the frequency of repairs and replacements.

In the medical sector, implantable devices like pacemakers and prostheses could benefit from safer and longer-lasting materials, critically improving patient health. In the aerospace industry, understanding and preventing material fractures can lead to more robust and reliable structures, reducing the risks associated with space and air travel. “The results of this research not only pave the way for future studies aimed at developing materials with unprecedented mechanical properties but also have a positive environmental impact by reducing the need for frequent product replacements and decreasing waste.

This can contribute to more sustainable production and more efficient use of natural resources,” concludes Davide Riccobelli from the Department of Mathematics at Politecnico di Milano. The study was conducted by an international team of researchers, led at Politecnico di Milano by Davide Riccobelli and Pasquale Ciarletta, in collaboration with Sorbonne Université, École Polytechnique, and ESPCI in Paris, demonstrating that international collaborations continue to play a crucial role in pushing the boundaries of materials science.

Journal: Physical Review Letters
DOI: 10.1103/PhysRevLett.132.248202
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Elastic Instability behind Brittle Fracture
Article Publication Date: 14-Jun-2024

Media Contact

Francesca Pierangeli
Politecnico di Milano
relazionimedia@polimi.it
Office: +390223992441

www.polimi.it

Media Contact

Francesca Pierangeli
Politecnico di Milano

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Multiple Sclerosis: Early Warnings in the Immune System

LMU researchers demonstrate that certain immune cells already play an important role in the early stages of multiple sclerosis. The researchers compared the CD8 T cells of monozygotic twin pairs,…

Quantum communication: using microwaves to efficiently control diamond qubits

Major breakthrough for the development of diamond-based quantum computers. Quantum computers and quantum communication are pioneering technologies for data processing and transmission that is much faster and more secure than…

Logic with light

Introducing diffraction casting, optical-based parallel computing. Increasingly complex applications such as artificial intelligence require ever more powerful and power-hungry computers to run. Optical computing is a proposed solution to increase…

Partners & Sponsors