New technique pinpoints nanoscale ‘hot spots’ in electronics
… to improve their longevity.
Borrowing methods from biological imaging, Rochester engineers have developed a way to spot tiny, overheated components that cause electronics’ performance to degrade.
When electronic devices like laptops or smartphones overheat, they are fundamentally suffering from a nanoscale heat transfer problem. Pinpointing the source of that problem can be like trying to find a needle in a haystack.
“The building blocks of our modern electronics are transistors with nanoscale features, so to understand which parts of overheating, the first step is to get a detailed temperature map,” says Andrea Pickel, an assistant professor from the University of Rochester’s Department of Mechanical Engineering. “But you need something with nanoscale resolution to do that.”
Existing optical thermometry techniques are impractical because they have fundamental limits on the spatial resolution they can achieve. So Pickel and her materials science PhD students Ziyang Ye and Benjamin Harrington engineered a new approach to overcome these limitations by leveraging Nobel Prize in Chemistry–winning optical super-resolution fluorescence microscopy techniques used in biological imaging. In a new Science Advances study, the researchers outline their process for mapping heat transfer using luminescent nanoparticles.
By applying highly doped upconverting nanoparticles to the surface of a device, the researchers were able to achieve super-high resolution thermometry at the nanoscale level from up to 10 millimeters away. According to Pickel, that distance is extremely far in the world of super-resolution microscopy and that the biological imaging techniques they used for inspiration typically operate less than one millimeter away.
Pickel says that while the biological imaging techniques provide great inspiration, applying them to electronics had significant hurdles because they involve such different materials.
“Our requirements are very different from biologists because they’re looking at things like cells and water-based materials,” she says. “Often, they might have a liquid like water or an oil between their objective lens and their sample. That’s great for biological imaging, but if you’re working with an electronic device, that’s the last thing you want.”
The paper demonstrates the technique using an electrical heater structure that the team designed to produce sharp temperature gradients, but Pickel says their method can be used by manufacturers to improve a wide array of electrical components. To further improve the process, the team hopes to lower the laser power used and refine the methods for applying layers of nanoparticles to the devices.
The research was supported by the National Science Foundation and a University of Rochester Furth Fund Award.
Journal: Science Advances
DOI: 10.1126/sciadv.ado6268
Article Title: Optical super-resolution nanothermometry via stimulated emission depletion imaging of upconverting nanoparticles
Article Publication Date: 17-Jul-2024
Media Contact
Luke Auburn
University of Rochester
luke.auburn@rochester.edu
Cell: 5854903198
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
A ‘language’ for ML models to predict nanopore properties
A large number of 2D materials like graphene can have nanopores – small holes formed by missing atoms through which foreign substances can pass. The properties of these nanopores dictate many…
Clinically validated, wearable ultrasound patch
… for continuous blood pressure monitoring. A team of researchers at the University of California San Diego has developed a new and improved wearable ultrasound patch for continuous and noninvasive…
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….