Physicists discover heaviest antimatter hypernucleus to date

Antihyperhydrogen-4 created in a heavy-ion collision
(c) Image by IMP

Physicists from the STAR Collaboration have observed a new antimatter hypernucleus, antihyperhydrogen-4, for the first time. This is the heaviest antimatter hypernucleus discovered in experiments to date. This study, led by researchers from the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences, was published in Nature on Aug. 21.

Current physics assumes that the properties of matter and antimatter are symmetrical and that equal amounts of matter and antimatter existed at the birth of the universe. However, some mysterious physical mechanism caused the annihilation of most matter and antimatter, with only about one in ten billion matter particles surviving. These particles formed the matter world we see today.

“What caused the difference in quantities of matter and antimatter in the universe? To answer this question, an important approach is to create new antimatter in the laboratory and study its properties,” said Prof. QIU Hao from IMP.

In today’s matter-dominated world, antimatter is extremely rare because it easily annihilates with surrounding matter. Antimatter nuclei and antimatter hypernuclei (nuclei containing hyperons such as Lambda) formed by combining several antibaryons are even more difficult to produce. Since the Dirac equation indicated the existence of antimatter in 1928, scientists have discovered only six types of antimatter (hyper)nuclei over nearly a century.

The newly discovered antihyperhydrogen-4 was produced at the Relativistic Heavy Ion Collider (RHIC) in the United States. RHIC can accelerate heavy ion beams to nearly the speed of light and make them collide. These collisions simulate the conditions of the early universe in the laboratory, producing fireballs with temperatures of several trillion degrees, which contain approximately equal amounts of matter and antimatter. As the fireball rapidly expands and cools, some antimatter escapes annihilation with matter and is detected by the STAR detector.

Antihyperhydrogen-4 is composed of one antiproton, two antineutrons, and one anti-Lambda hyperon. Due to the presence of the unstable anti-Lambda hyperon, antihyperhydrogen-4 decays after traveling merely a few centimeters.

“After analyzing experimental data of approximately 6.6 billion heavy-ion collision events, we reconstructed antihyperhydrogen-4 from its decay products antihelium-4 and π+ meson, and identified a signal of about 16 antihyperhydrogen-4,” said WU Junlin, a PhD student at IMP.

The researchers also measured the lifetime of antihyperhydrogen-4 and found no significant difference compared to that of its corresponding particle hyperhydrogen-4 within the limits of measurement precision, further verifying the symmetry between matter and antimatter properties.

The discovery and study of antihyperhydrogen-4 mark a significant advancement in the exploration of antimatter and the understanding of matter-antimatter symmetry.

Journal: Nature
DOI: 10.1038/s41586-024-07823-0
Article Publication Date: 21-Aug-2024

Media Contact

LIU Fang
Institute of Modern Physics
fangliu@impcas.ac.cn

www.impcas.ac.cn

Media Contact

LIU Fang
Institute of Modern Physics

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

New battery technology could boost renewable energy storage

Columbia Engineers develop new powerful battery “fuel” — an electrolyte that not only lasts longer but is also cheaper to produce. Renewable energy sources like wind and solar are critical…

New treatment extends ovarian function in older mice

Going beyond fertility, treatment also fixes hormone production and overall health. Medication to reduce ovarian scarring helps extends overall health of reproductive system Freezing eggs only addresses age-related infertility, not…

Swallowing triggers a feeling of elation

Researchers at the University of Bonn and the University of Cambridge have identified an important control circuit involved in the eating process. The study has revealed that fly larvae have…

Partners & Sponsors