One of world’s fastest ocean currents is remarkably stable
Study challenges previous assertions of Gulf Stream slowdown.
A new study by scientists at the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), the University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML), and the National Oceanography Centre found that the strength of the Florida Current, the beginning of the Gulf Stream system and a key component of the global Atlantic Meridional Overturning Circulation, or AMOC, has remained stable for the past four decades.
There is growing scientific and public interest in the AMOC, a three-dimensional system of ocean currents that act as a “conveyer belt” to distribute heat, salt, nutrients, and carbon dioxide across the world’s oceans. Changes in the AMOC’s strength could impact global and regional climate, weather, sea level, precipitation patterns, and marine ecosystems.
In this research, measurements of the Florida Current were corrected for the secular change in the geomagnetic field to find that the Florida Current, one of the fastest currents in the ocean and an important part of the AMOC, has remained remarkably stable over the past 40 years.
The study published in the journal Nature Communications, the scientists reassessed the 40-year record of the Florida Current volume transport measured on a decommissioned submarine telecommunications cable in the Florida Straits, which spans the seafloor between Florida and the Bahamas. Due to the Earth’s magnetic field, as salt ions in the seawater are transported by the Florida Current over the cable, a measurable voltage is induced in the cable. The cable measurements were analyzed together with measurements from regular hydrographic surveys that directly measure the Florida Current volume transport and water mass properties. In addition, the transport was inferred from cross-stream sea level differences measured by altimetry satellites.
“This study does not refute the potential slowdown of AMOC, it shows that the Florida Current, one of the key components of the AMOC in the subtropical North Atlantic, has remained steady over the more than 40 years of observations,” said Denis Volkov, lead author of the study and a scientist at CIMAS which is based at the Rosenstiel School. “With the corrected and updated Florida Current transport time series, the negative tendency in the AMOC transport is indeed reduced, but it is not gone completely. The existing observational record is just starting to resolve interdecadal variability, and we need many more years of sustained monitoring to confirm if a long-term AMOC decline is happening.”
Understanding the state of the Florida Current is very important for developing coastal sea level forecast systems, assessing local weather and ecosystem and societal impacts.
Since 1982, NOAA’s Western Boundary Time Series (WBTS) project and its predecessors have monitored the transport of the Florida Current between Florida and the Bahamas at 27°N using a 120-km long submarine cable paired with regular hydrographic cruises in the Florida Straits. This nearly continuous monitoring has provided the longest observational record of a boundary current in existence. Beginning in 2004, NOAA’s WBTS project partnered with the United Kingdom’s Rapid Climate Change program (RAPID) and the University of Miami’s Meridional Overturning Circulation and Heatflux Array (MOCHA) programs to establish the first trans basin AMOC observing array at about 26.5N.
The study was supported by NOAA ‘s Global Ocean Monitoring and Observing program (grant #100007298), NOAA’s Climate Variability and Predictability program (grant #NA20OAR4310407), Natural Environment Research Council (grants #NE/Y003551/1 and NE/Y005589/1) and the National Science Foundation (grants #OCE-1332978 and #OCE-1926008).
Journal: Nature Communications
DOI: 10.1038/s41467-024-51879-5
Method of Research: Observational study
Subject of Research: Not applicable
Article Title: Florida Current transport observations reveal four decades of steady state
Article Publication Date: 5-Sep-2024
COI Statement: none
Media Contact
Diana Udel
University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science
dudel@rsmas.miami.edu
Office: 305-421-4704
Cell: 786-256-4446
Media Contact
All latest news from the category: Ecology, The Environment and Conservation
This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.
innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.
Newest articles
A ‘language’ for ML models to predict nanopore properties
A large number of 2D materials like graphene can have nanopores – small holes formed by missing atoms through which foreign substances can pass. The properties of these nanopores dictate many…
Clinically validated, wearable ultrasound patch
… for continuous blood pressure monitoring. A team of researchers at the University of California San Diego has developed a new and improved wearable ultrasound patch for continuous and noninvasive…
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….