Ultrasound to build new blood vessels in living tissue

A dual transducer system developed at the University of Rochester puts ultrasound technology to a new use, organizing cells into new patterns that can promote blood vessel growth.
Credit: University of Rochester photo / J. Adam Fenster

The novel technique could be used to treat damaged tissue in a range of medical applications, including reconstructive and plastic surgeries.

A technology most often used for medical imaging is being repurposed as a new tool for restoring blood flow in tissue damaged from disease, injury, and reconstructive surgery. Biomedical engineers at the University of Rochester are leveraging ultrasound waves to organize endothelial cells—the building blocks of blood vessels—into patterns that can promote the growth of new vessel networks within days.

“We developed a novel technique using some of the forces associated with an ultrasound field called acoustic radiation force to act on cells in a material to move them to different spatial locations,” says Diane Dalecki, the Kevin J. Parker Distinguished Professor in Biomedical Engineering and director of the Rochester Center for Biomedical Ultrasound. “By changing the frequency of the sound fields, we can control the distance between how the cells are patterned. Depending on the patterning we use, we can create different types of blood vessel morphologies.”

A team led by Dalecki and Denise Hocking, a professor of pharmacology and physiology and of biomedical engineering, have used the technique to engineer tissue with new blood vessel networks in vitro. In their recently published studies, they showed that acoustic patterning can also be used to produce new blood vessels directly in the body. A new $2 million grant from the National Institutes of Health will help the researchers refine their in vivo acoustic patterning technologies.

“Rather than making an engineered tissue product outside of the body and then implanting it, we would like to induce the formation of new blood vessels directly in the body,” says Hocking. “Ultrasound has the ability to penetrate through tissue and is already used in many clinical applications, so why not try to produce new vessels locally?”

The first step of the project will be finding the ideal combinations of cells and hydrogels to best form new blood vessels. Rather than going through the long process of extracting stem cells from bone marrow, the team hopes to get the necessary host of cells from a patient’s fat tissue.

“We also have to innovate some new instrumentation to do the procedure in vivo,” says Dalecki. “The approach we used outside the body had a transducer and a reflector, but you can’t put a reflector in the body. One approach we’re testing uses a holographic lens transducer that includes a 3D-printed mask, while the other involves using two intersecting ultrasound beams to create an acoustic standing wave field within the body non-invasively.”

Once the group has completed those steps, they aim to demonstrate the procedure in a clinically relevant model. Ultimately, the researchers hope the method can be used in a wide range of medical applications, including wound healing, plastic surgeries, and cancer surgeries.

“During reconstructive surgeries such as after a tumor removal, you’ve taken out a lot of tissue and you can replace it with a filler, but there are no blood vessels,” says Hocking. “As a result, a lot of people have a loss of blood vessels in surrounding tissue—what we call an ischemic injury. That leads to cell and tissue death in the area. We want to be able to reconstruct some of those small microvessels to restore good blood flow and preserve the tissue.”

Dalecki and Hocking will collaborate with experts from the University of Rochester Medical Center including vascular surgeon Doran Mix and Professor Emeritus Howard Langstein, as well as Mohamed Ghanem from the University of Washington’s Center for Industrial and Medical Ultrasound.

Media Contact

Luke Auburn
University of Rochester
luke.auburn@rochester.edu
Cell: 5854903198

Media Contact

Luke Auburn
University of Rochester

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

NASA completes spacecraft to transport, support Roman Space Telescope

The spacecraft bus that will deliver NASA’s Nancy Grace Roman Space Telescope to its orbit and enable it to function once there is now complete after years of construction, installation,…

Ion-Trap Quantum Computer for Novel Research and Development

The AQT quantum computer, featuring 20 qubits based on trapped-ion technology, is now operational at LRZ’s Quantum Integration Centre (QIC), making it the first of its kind in a computing…

Mapping out matter’s building blocks in 3D

Theorists turn to supercomputers to help build a 3D picture of the structures of protons and neutrons. Deep inside what we perceive as solid matter, the landscape is anything but…

Partners & Sponsors