On the importance of a bowl of water for Two-Child families

The piezoelectric coefficient and carrier concentration of Bi2WO6 were adjusted by introducing oxygen vacancies, and the corresponding effects on the performance of piezocatalytic hydrogen generation were studied. Although the increasing of concentration of oxygen vacancies will inhibit the piezoelectric coefficient, it increases the carrier concentration inverse, and the hydrogen production rate exhibits a volcanic pattern. The piezoelectric coefficient and carrier concentration as two factors jointly determine the piezocatalytic performance. The optimal hydrogen production rate per power of 2.21 μmol g–1 h–1 W–1 is equivalent and even better than that of most reported piezocatalysts.
Credit: Journal of Advanced Ceramics, Tsinghua University Press

How to balance the piezoelectric coefficient and carrier concentration of material for ultrahigh piezocatalysis?

Piezocatalysis, which is able to convert natural mechanical energy into electrochemical energy, is considered a promising green and sustainable technology. The efficiency is limited by factors such as the piezoelectric properties of the material, the carrier concentration and mobility, and the number of reactive sites. Low carrier concentration will limit the applicability of the material as a piezoelectric catalyst; however, high carrier concentration may affect the orderly arrangement of electric dipoles inside the material, thus destroying its piezoelectric performance to a certain extent. Therefore, balancing the piezoelectric coefficient and carrier concentration of materials is a key in the field of piezocatalysis.

Recently, a team of green energy and catalytic materials scientists led by Professor Da Chen and Professor Laishun Qin joint team from China Jiliang University, highlightly reported the subject of balancing the piezoelectric coefficient and carrier concentration of Bi2WO6-x for ultrahigh piezocatalysis. In this work, the correlation and influence between oxygen vacancies and piezocatalytic performance of hydrogen generation were comprehensively analyzed from the aspects of piezoelectric coefficient, carrier concentration, carrier separation and migration mechanisms, and surface catalytic activity. The optimal hydrogen production rate per power of 2.21 g–1 h–1 W–1 is equivalent and even better than that of most reported piezocatalysts. The d33 and Nd as two factors jointly determine the piezocatalytic performance. The findings in this research can provide important and deep-seated insights for better piezocatalysts in future.

The team published their work in Journal of Advanced Ceramics on September 18, 2024.

“In this report, we used a simple one-step solvent heat, that is, Bi2WO6-x nanoparticles with different oxygen vacancy concentrations were prepared by adjusting the time and temperature of the ethylene glycol-assisted solvent thermal reaction, to realize the regulation of the material piezoelectric coefficient and carrier concentration, so as to explore the effect of the relationship on the piezocatalytic performance”. said Da Chen, professor from College of Materials and Chemistry at China Jiliang University.

This work was supported by the National Natural Science Foundation of China (22309170, 51972294, 51972291), the Natural Science Foundation of Zhejiang Province (LQ24E020003), Open fund project of National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization of Nanchang Hangkong University (ES202480182). The authors extend their gratitude to Shiyanjia Lab (www.shiyanjia.com) for providing invaluable assistance with the material characterization analysis.

About Journal of Advanced Ceramics

Journal of Advanced Ceramics (JAC) is an international academic journal that presents the state-of-the-art results of theoretical and experimental studies on the processing, structure, and properties of advanced ceramics and ceramic-based composites. JAC is Fully Open Access, monthly published by Tsinghua University Press, and exclusively available via SciOpen. JAC’s 2023 IF is 18.6, ranking in Top 1 (1/31, Q1) among all journals in “Materials Science, Ceramics” category, and its 2023 CiteScore is 21.0 (top 5%) in Scopus database. ResearchGate homepage: https://www.researchgate.net/journal/Journal-of-Advanced-Ceramics-2227-8508

About SciOpen 

SciOpen is an open access resource of scientific and technical content published by Tsinghua University Press and its publishing partners. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, identity management, and expert advice to ensure each journal’s development. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.

Journal: Journal of Advanced Ceramics
DOI: 10.26599/JAC.2024.9220970
Article Title: Balancing the piezoelectric coefficient and carrier concentration of Bi2WO6−x for ultrahigh piezocatalysis
Article Publication Date: 18-Sep-2024

Media Contact

Mengdi Li
Tsinghua University Press
limd@tup.tsinghua.edu.cn
Office: 86-108-347-0580

www.tsinghua.edu.cn

Expert Contacts

Dr. Xiaoli Xu
China Jiliang University
xiaolixu@cjlu.edu.cn

Professor Laishun Qin
China Jiliang University
qinlaishun@cjlu.edu.cn

Professor Da Chen
China Jiliang University
chenda@cjlu.edu.cn

www.cjlu.edu.cn

Media Contact

Mengdi Li
Tsinghua University Press

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Energy Portrait: Capturing a Molecule’s Moment of Excitement

Researchers at the University of Regensburg in collaboration with IBM Research Europe – Zurich have found a way to access excited states of single molecules and determine their energies. A…

“Tamed” Molecules for More Sustainable Catalysts

New perspectives for the development of catalysis: Chemnitz University of Technology’s Chair of Inorganic Chemistry has succeeded in synthesizing a spectacular gallium compound in the laboratory. Catalysts play an important…

Scientists design new drug to fight malaria

MED6-189 is effective against drug-sensitive and drug-resistant strains of human malaria parasites. In 2022, nearly 619,000 global deaths due to malaria were caused by Plasmodium falciparum, the most virulent, prevalent, and…

Partners & Sponsors