Energy Portrait: Capturing a Molecule’s Moment of Excitement

Artistic illustration of the steered exchange of single electrons (red and blue) between the tip of an atomic force microscope (golden) and a single pentacene molecule (black/white spheres) adsorbed on NaCl (green).
(c) Jascha Repp

Researchers at the University of Regensburg in collaboration with IBM Research Europe – Zurich have found a way to access excited states of single molecules and determine their energies.

A very fundamental property of atoms and molecules are the energies, at which electrons can be added to or removed from the compound. This is decisive for many chemical reactions, in which electrons are exchanged. However, it is not only of fundamental interest: Organic compounds are promising candidates for advanced solar cells and light emitting devices, being cheap, abundant, and non-toxic. For the functionality of such devices, the energies of electron exchange with the surrounding are also of utmost importance.

The functionality of solar cells and light emitting devices is strongly influenced by excited states, in which the molecule has acquired additional energy. Knowing the value of this energy is key in many applications.

Researchers at the University of Regensburg in collaboration with IBM Research Europe – Zurich have found a way to access energies of charge exchange for ground and excited states of a single molecule. To this end, they utilized an atomic force microscope, a microscope, in which tiny forces between a tip and a surface are being sensed. Such a microscope allows even the internal structure of single molecules to be imaged (see also Science 325, 1110; 2009), such that the researchers can identify the molecule under the microscope’s tip. In addition, the tip can also be used to locally add and remove electrons to and from the molecule (see also Nature 566, 245; 2019). The researchers in Regensburg used this ability to access differently charged and excited states of individual molecules. Specifically, by slowly changing the energy of the electrons available in the tip and observing when the molecule undergoes charge-state transitions, the different excited states could be accessed, identified and their energies measured. The researchers envision that this technique could be applied to a wide range of molecules, including those interesting from the perspective of fundamental research and those for applications in energy conversion and organic electronics.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jascha Repp
Fakultät für Physik
Universität Regensburg
Tel.: +49 (0)941 943-4201
E-Mail: Jascha.Repp@physik.uni-regensburg.de

Originalpublikation:

Lisanne Sellies, Jakob Eckrich, Leo Gross, Andrea Donarini, Jascha Repp
Controlled single-electron transfer enables time-resolved excited-state spectroscopy of individual molecules; Nature Nanotechnology
https://www.nature.com/articles/s41565-024-01791-2

http://www.uni-regensburg.de/

Media Contact

Bastian Schmidt Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

New model of neuronal circuit provides insight on eye movement

Working with week-old zebrafish larva, researchers at Weill Cornell Medicine and colleagues decoded how the connections formed by a network of neurons in the brainstem guide the fishes’ gaze. The…

Innovative protocol maps NMDA receptors in Alzheimer’s-Affected brains

Researchers from the Institute for Neurosciences (IN), a joint center of the Miguel Hernández University of Elche (UMH) and the Spanish National Research Council (CSIC), who are also part of…

New insights into sleep

…uncover key mechanisms related to cognitive function. Discovery suggests broad implications for giving brain a boost. While it’s well known that sleep enhances cognitive performance, the underlying neural mechanisms, particularly…