Paving the way for diagnostics

A graphene biosensor chip on a printed circuit board, connected by wirebond wires. With this setup, highly sensitive biomeasurements can be performed directly in complex clinical samples without the need for amplification or label coupling.
Image: Jens Meyer (University of Jena)

Chemists at the University of Jena develop graphene-based biosensor.

Just like other biosensors, a graphene-based biosensor requires a functionalised surface on which only specific molecules can attach. If, for example, a specific biomarker is to be detected from a blood or saliva sample, a corresponding counterpart – a so-called capture molecule – must be applied to the sensor surface. The problem: “If graphene is functionalised directly, its electronic structure changes unfavourably,” explains Prof. Dr Andrey Turchanin from the University of Jena. “Graphene is then no longer graphene – the specific electronic properties that you actually want to utilise are then no longer available.” Parameters that make up the high sensitivity of such a biosensor – for example the mobility of the charge carriers – are too strongly influenced.

Functionalisation thanks to a molecular intermediate layer

However, Turchanin and his team, together with partners from industry, research and medicine, have now developed a method to functionalise graphene without interference. “We have applied a molecular carbon membrane to the graphene, which is just as thin as graphene at one nanometre. This intermediate layer is dielectric, which means that it does not conduct electricity,” explains the Jena chemist. “Both components are connected to each other by so-called van der Waals forces and form a heterostructure that we were able to functionalise without affecting the electronic properties of the graphene.” This is because chemically active functional groups can be applied to the molecular intermediate layer without interference, to which any number of different capture molecules can be attached. When the desired counterparts attach, they transmit the electric field to the graphene, which changes the electrical signals in this material without affecting its properties.

Sample from a nasal swabDr David Kaiser holding a sample from a nasal swab, which is analyzed for specific biomarkers using the developed sensor. Credit: Jens Meyer/University Jena

Investigation of complex clinical samples

As capture molecules, the researchers equipped the chemically active functional group on the molecular intermediate layer with artificially produced aptamers that can bind specific molecules in a very targeted manner. They also functionalised the carbon nanomembrane with a protein-repellent layer of polyethylene glycol, a synthetic polymer that is often used in medicine. It prevents something from adsorbing on the surface that is not wanted. In this way, the biomarkers sought can be found in a complex biological sample.

With this experimental set-up, the experts in Jena succeeded in detecting chemokines – a certain group of proteins that play an important role in the human immune system and can therefore play a major role as biomarkers in the diagnosis of illnesses. “Thanks to the cooperation with a medicine laboratory in the Netherlands, we used samples from nasal swabs of real patients for these experiments,” says Andrey Turchanin. “What’s more, the graphene sensors we developed can be used to find not just one biomarker, but hundreds,” adds Dr David Kaiser, the first author of the publication.

More sensitive, faster, cheaper

“This research result could be groundbreaking for the diagnostics of the future, because we have been able to remove a major hurdle on the way to a graphene-based biosensor that is far more effective than anything currently used in normal clinical applications area,” says Kaiser. “It is much more sensitive, significantly faster – the results are available in around five minutes – and cost-effective if it is produced in large quantities.” The measuring principle is purely electrical – changes in the electrical current alone indicate whether the biomarkers being sought have been found. Accordingly, such a biosensor can be easily integrated into everyday clinical practice in conjunction with a handy point-of-care device. “It’s probably even possible with our mobile phones,” says Turchanin.

Journal: Advanced Materials
DOI: 10.1002/adma.202407487
Method of Research: Experimental study
Subject of Research: People
Article Title: Ultrasensitive Detection of Chemokines in Clinical Samples with Graphene-Based Field-Effect Transistors
Article Publication Date: 20-Nov-2024

Media Contact

Axel Burchardt
Friedrich-Schiller-Universitaet Jena
presse@uni-jena.de
Office: 0049-364-19401421

Expert Contact

Prof. Dr Andrey Turchanin
Friedrich Schiller University Jena
andrey.turchanin@uni-jena.de
Office: +49 3641 / 948370
 @UniJena

Media Contact

Axel Burchardt
Friedrich-Schiller-Universitaet Jena

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Nerve cells of blind mice retain their visual function

Nerve cells in the retina were analysed at TU Wien (Vienna) using microelectrodes. They show astonishingly stable behavior – good news for retina implants. The retina is often referred to…

State-wide center for quantum science

Karlsruhe Institute of Technology joins IQST as a new partner. The mission of IQST is to further our understanding of nature and develop innovative technologies based on quantum science by…

Newly designed nanomaterial

…shows promise as antimicrobial agent. Rice scientists develop nanocrystals that kill bacteria under visible light. Newly developed halide perovskite nanocrystals (HPNCs) show potential as antimicrobial agents that are stable, effective…