Researchers crack the code of how fish pick their own birthday

Zebrafish embryo
Credit: Dr. Deodatta Gajbhiye

New research has revealed that fish embryos actively control their hatching timing through a neurohormone, Thyrotropin-Releasing Hormone (TRH), which triggers the release of enzymes that dissolve the egg wall. This groundbreaking discovery uncovers a previously unknown neural mechanism that governs a critical life-stage transition, showing that embryos are not passive but instead actively make life-or-death decisions. The finding has significant evolutionary implications, offering new insights into neurobiology, survival strategies, and environmental adaptation in vertebrates.

Dr. Matan Golan of the Hebrew University of Jerusalem and the Agricultural Research Organization – Volcani Institute led a team of researchers who uncovered how fish embryos determine the ideal moment to hatch. Their groundbreaking discovery, published in Science, reveals an active mechanism by which these embryos control a critical life-or-death decision, offering new insights into biology and evolution.

The process of hatching is a pivotal moment for all egg-laying species. Emerging too soon or waiting too long can mean certain death for a newborn animal, unprepared to navigate the challenges of the outside world. From breathing to evading predators, survival hinges on perfect timing. Remarkably, this timing is dictated by the embryo itself – but until now, the mechanism behind this decision remained unknown.

The researchers discovered that fish embryos initiate hatching through a signal from their brain: a neurohormone called Thyrotropin-Releasing Hormone (TRH). TRH travels via the bloodstream to a specialized gland, triggering the release of enzymes that dissolve the egg wall, allowing the embryo to break free. This critical neural circuit for hatching forms just before the event and disappears shortly thereafter. Without TRH, embryos are unable to release the enzymes, resulting in their death inside the egg.

This discovery uncovers a previously hidden neural circuit that governs one of the most crucial life-stage transitions and demonstrates how fish embryos, far from being passive, possess the ability to actively control their own hatching process, a key to their survival.

The findings have significant evolutionary implications, as they reveal the long-sought neuronal mechanism controlling hatching in the largest group of living vertebrates. Looking ahead, the researchers plan to explore how TRH and other neuroendocrine factors influence hatching in other species.

In addition to its evolutionary insights, this research underscores the remarkable ability of embryos to make decisions that directly affect their survival, offering a deeper understanding of the intricate interplay between neurobiology and environmental adaptation.

Journal: Science
DOI: 10.1126/science.ado8929
Method of Research: Experimental study
Subject of Research: Animals
Article Title: A transient neuro-hormonal circuit controls hatching in fish
Article Publication Date: 5-Dec-2024

Media Contact

Yarden Mills
The Hebrew University of Jerusalem
pressoffice@savion.huji.ac.il

www.huji.ac.il

Media Contact

Yarden Mills
The Hebrew University of Jerusalem

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Visualization of selective RNA technology targeting glioblastoma cells.

Self-Destructing Cancer Cells: Cutting-Edge RNA Breakthrough

Jülich scientists use novel RNA technology to selectively switch off tumours in the brain. An Adaptable Platform Technology That Destroys Glioblastoma Cancer Cells Using a special RNA molecule, a team…

HFpEF patients engaging in endurance and strength training as part of a clinical trial on exercise therapy for heart failure.

Endurance Training: Transforming Lives of Heart Failure Patients

Can strength and endurance training be beneficial for patients with a certain form of heart failure? A research team from Greifswald investigated this question together with seven other research centers…

A map highlighting shark conservation measures in the Mediterranean Sea.

A Wake-Up Call for Mediterranean Shark Protection Against Extinction

Overfishing, illegal fishing and increasing marketing of shark meat pose significant threats to the more than 80 species of sharks and rays that inhabit the Mediterranean Sea, according to a…